

P a g e | 2

Contents

Introduction .. 4

1. Context of the CodER Project ... 5

1.1. Looking at the bigger picture: Gamification and its role in education 5

1.2. Aim of game-based education methods in coding and microcontrollers 6

1.3. The audience and target group of these activities ... 8

PART A: The CodER Coding Module (10 hours)... 11

1. Introduction to programming .. 12

1.1. What is programming ... 12

1.2. Why learn programming? What are the benefits? ... 12

1.3. The process of program development and algorithms ... 13

1.4. Programming languages – The Most In-Demand Programming Languages 15

2. Getting Setup with Python ... 16

2.1. What is Python? .. 16

2.2. The most used Python Integrated Development Environments (IDEs) per industry 17

2.3. Setting up a Python Integrated Development Environment (IDE) .. 18

2.4. Running Python in Command line ... 23

3. Basics to programming in Python ... 24

3.1. The Basics: Data Types (Basic and Complex) .. 24

3.2. Variables, expressions, and statements ... 25

3.3. Lists, Dictionaries and Tuples .. 30

3.3.1. Lists.. 30

3.3.2. Tuples .. 35

3.3.3. Dictionaries .. 39

3.4. Conditionals and Loops ... 43

3.4.1. Boolean expressions... 43

3.4.2. Logical operators .. 45

3.4.3. Nested if statements .. 46

3.4.4. Loops ... 46

3.5. Understanding the flow of execution through functions.. 49

3.6. Putting the pieces together - How to build a program ... 53

3.7. How to adjust a program to fit your needs .. 56

3.8. Syntactic, Runtime and Semantic Errors – Handling Errors in Python 57

P a g e | 3

3.9. Practice ... 59

PART B: The CodER Microcontrollers Module (10 hours).. 60

1. Introduction to Microcontrollers.. 61

1.1. What is a microcontroller .. 61

1.2. What is Arduino and its different types ... 62

1.3. Concepts: Input, Output, Analog, Digital ... 66

2. Fundamentals of Programming with Arduino IDE ... 69

2.1. Setting up Arduino IDE and basic commands ... 69

2.2. Programming in Arduino and uploading programs to the board .. 72

2.3. Blinking Led with Arduino ... 74

3. Applications ... 77

3.1. What is robotics? .. 77

3.2 Types of robots .. 77

3.3 Driving a DC motor with a motor shield.. 82

3.4. Build a paintbot using a DC motor and Arduino ... 84

3.5 Build an interactive paper toy with a servo motor .. 87

3.6. Remote-controlled door lock .. 94

3.7. Measuring temperature, humidity, light and colour .. 99

3.7.1. Using a sensor with Arduino ... 100

3.7.2. Build a theremin with Arduino and a light sensor ... 101

3.7.3. Colour sensitive robots ... 102

3.7.4. Introduction to DHT11 sensor .. 103

3.7.5. Build a smart cooling fan .. 106

P a g e | 4

Introduction

In the modern world, there is an increasing emphasis on the acquisition of digital skills.

However, the current mismatch of supply and demand found in the labour market presents

new challenges for employers and jobseekers alike. This mismatch primarily affects young

people since youth unemployment is one of the most significant issues that Europe is facing.

The CodER project represents an attempt to bridge this gap by materialising knowledge on

coding and microcontrollers through the innovative method of Escape Rooms (ERs) for

youth workers and organisations to educate young people and increase their interest and

engagement towards occupations that are tech-oriented. The European partners that are

taking part in this project, funded by the Erasmus+ program, are: Digijeunes (France),

Challedu (Greece), Citizens in Power – C.I.P. (Cyprus), RITE (Cyprus), AKMI (Greece), and

Kalimera (Croatia).

Through this project, youth workers and organisations will be equipped with new skills and

innovative methods to attract young people, and especially young women, in tech-oriented

pathways. The CodER Module represents the first step towards the realisation of this

project's aims for the general public. This module provides the basics of programming and

microcontrollers based on real-life examples to make its content relatable to everyday

usage. It attempts to instil the logic behind programming and microcontrollers to promote

the cultivation of critical thinking, creativity, and problem-solving skills, amongst other skills.

The context and approach of the CodER project are presented initially to provide the

readers with an understanding of the rationale behind the gamified/game-learning

approach taken. The first part of the module is dedicated to understanding the use and

benefits of programming, setting up Python Integrated Development Environments (IDEs),

and going through the basics of the Python programming language to build a small program.

The second part of the module is dedicated to introducing Microcontrollers and their usage,

setting up the Arduino software and learning how to use it to execute small tasks on

microcontrollers.

P a g e | 5

1. Context of the CodER Project

1.1. Looking at the bigger picture: Gamification and its role in education

Over the past decade, there has been a shift from traditional teacher-centric learning

methods to what is sometimes referred to as learner-centered approaches to education.

Whereas traditional approaches to education involve "the passive transfer of knowledge

from the instructor to the student" (McGuire & Gubbins, 2010, p.1), in learner-centered

approaches to education," students are expected to become aware of and evaluate their

own experience (…) where the instructor is no longer an oracle, but a guide who participates

in learning" (McGuire & Gubbins, 2010, p.1). This contemporary approach to learning

methods is usually more technologically-based and involves the use of interactive strategies

that aim to motivate students to actively engage and participate in their learning process.

One reason for adopting these technology-based approaches to education, and especially to

STEM education, is that a significant number of jobs are now centered around activities and

tasks that require the use of internet and digital technologies (Daniel Calderón-Gómez et al.

2020), and in the near future even more jobs will have to adopt this structure. This means

that these jobs will require the acquisition of at least some basic digital skills, whereas more

favourable and high-paid jobs will require an even more advanced knowledge of digital

technologies (Karpinski et al., 2021). Another factor that played a role in moving towards

learner-centered approaches to education, except the rapid technological advancement, is

the correlation found between disengagement, low performance, and low participation

rates in diverse educational settings (as cited in Levels et al., 2022; Callanan et al., 2009). In

the case of youth, which ranges from 15- to 29-year-olds, this is further highlighted by the

statistics available in Europe where 13.7% were neither in Education, Employment or

Training (NEETs) (Eurofound, 2022). Therefore, policymakers and youth organisations found

themselves faced with new challenges to reinterest and reintegrate youth in education,

employment and/or training.

In various levels of education, the tendency to approach learning through game-based

elements in formal, non-formal and informal education contexts from early childhood to

higher education and beyond has become increasingly popular. Within this context, the

definitions of 'gamification' and 'game-based learning' emerged. Although the two terms are

often used interchangeably, they have some slight differences. By the term 'gamification',

we usually refer to "the use of game design elements in nongame contexts" (as cited in

Dichev & Dicheva, 2017, p. 2; Deterding, et al., 2011; Hamari et al., 2014; Werbach, 2014). In

the context of education, gamification refers to the use of "game design elements and

gameful experiences in the design of learning processes" (Dichev & Dicheva, 2017, p.2).

Game design elements consist of the dynamics, mechanics, and components of a game

(Dichev & Dicheva, 2017). On the other hand, game-based learning (GBL) utilises the

techniques deployed by game designers to create an entertaining and immersive gaming

P a g e | 6

experience for the user, with the sole aim of designing a virtual learning environment that

engages its users in educational activities. This type of learning can occur both physically

and digitally. Game-based learning is considered to have clearly defined learning outcomes

achieved through game contents (Sanchez, 2019). It is also commonly referred to as serious

games, digital learning, or educational games (Sanchez, 2019).

There are a plethora of studies available that explore the effects of game-based learning in

individuals of different ages from school students to higher education students and less

frequently in adults (e.g., Dichev & Dicheva, 2017; Ninaus et al., 2017; Sanchez et al., 2020).

The basis for this movement towards game-based learning is found in its potential to

motivate learners, especially within the youth age range, to actively engage and participate

in their own education. As described by Dichev & Dicheva (2017), such approaches to

learning call for "immersion in a way similar to what happens in games" (Dichev & Dicheva,

2017, p.2). Since video games are primarily designed for entertainment, "they can produce

states of desirable experience and motivate users to remain engaged in an activity" (Dichev

& Dicheva, 2017, p.12). Motivation is shown to be one of the most significant factors for

learners to engage and successfully perform any activity that requires time and effort.

Through game-based learning, the concept of time and effort is transformed into an

educational and entertaining environment that simultaneously allows users to build on their

knowledge, skills, and attitudes.

The simple act of framing an activity or task as a game suffices to bring about positive

psychological effects such as engagement or enjoyment (Dichev & Dicheva, 2017). This view

seems to be based on the assumption that intrinsic motivation derives from the basic

psychological need of satisfying that "feeling of competence or self-efficacy" (Ninaus et al.,

2017, p.16) present in solving a problem or in our context, completing a game objective. The

capacity of games to draw the players’ attention into a state of absorption while engaging

them in problem-solving tasks, stems from their goal-driven nature that places the player in

a state of absorption in trying to complete game objectives. There is a pedagogical

dimension inherent in games that is usually ignored, as Tulloch (2014) suggests, namely "the

process of games teaching players how to play" (as cited in Dichev & Dicheva, 2017, p.23).

Therefore, game-based methods of learning seek to imitate how a game draws the players

in a state of complete absorption and engagement in order to create an equally immersive

experience for educational purposes.

1.2. Aim of game-based education methods in coding and microcontrollers

Since the pandemic started, the emphasis placed on integrating technology into different

industries became even more prominent. The vision of the European Commission presented

in 2021 encompasses four vital points to enable Europe's digital transformation by 2030.

One of these critical points is the digital competence needed to ensure the development of

P a g e | 7

a resilient European economy and society. The target set to be reached by 2030 is for 80%

of people to have basic digital skills (European Commission, 2021a).

However, the biggest obstacle to the realisation of a European digital transformation is the

lack of digital skills in relation to their high demand. The percentage of employers facing a

shortage of digitally competent employees is as high as 70% (European Commission, 2021b).

This enlarges the digital skills gap that exists in the labour market, where even low-skilled to

semi-skilled professions require a level of digital competence (Karpinski et al., 2021). As

stated in the Digital Economy and Society Index (DESI), 56% of Europeans possess basic

digital skills, but only 31% possess digital skills above the basic level (European Commission,

2021b). Thus, the importance of problem-solving skills and computational thinking is high on

the agenda since only 13% of young people and 6% of adults possess such skills in the EU

(Eurostat, 2020).

The required digital skills are translated into the “Digital Competence Framework for

Citizens" (DigComp) developed by the European Commission, which incorporates a variety

of skills: 1) Information and data literacy, 2) Communication and collaboration, 3) Digital

content creation, 4) Safety and 5) Problem-solving (Centeno et al., 2019). It is argued that

the new technological requirements of occupations will create a new division within the

labour market, represented by three categories of digital workers: "the 'digital precariat'

(with a poor economic situation); 'traditional digital labour' (mainly involved in productive

digital tasks); and the 'innovative class' (carrying out productive and communicative digital

tasks)" (Calderón-Gómez et al., 2020, p. 7-8). Furthermore, it has been suggested that the

'digital precariat' will predominantly consist of young people and women (Calderón-Gómez

et al., 2020, p.9). In this vein, youth that is already at risk of exclusion in society and the

labour market based on their inactivity or inability to find employment or pursue further

education and training are found at the crossroads of double exclusion.

Corneliussen (2021) also highlights that the lack of female role models in these fields and

the dominant narrative of male ICT professionals actively discourages young girls and

women from a STEM-oriented path. Overall, more favourable job positions are generally

more occupied by men than by women (Calderón-Gómez et al., 2020) As it has been

mentioned above, women along with young people are the most prominent groups within

the digital precariat. At the same time, women are "underrepresented in the innovative

class, while also being overrepresented in traditional analogical labour" (Calderón-Gómez et

al., 2020, p. 8). A study shows that it is more frequent for men to spend more time on the

Internet for work-related activities than women, and between "those holding a university

degree, 77.5% of men compared with 70.0% of women use the internet at work" (Calderón-

Gómez et al., 2020, p.18-20). Furthermore, women tend to use digital technologies more for

communication and mobile use, whereas men tend to use digital technologies more for

productive and office use, and for multiple functions and uses (Calderón-Gómez et al. 2020).

P a g e | 8

In general, compared to men, women are less likely to use the internet and/or digital

technologies for more complex uses.

Therefore, coding and microcontrollers are highly relevant to the current needs of the

labour market. The combination of game-based learning in the realm of coding and

microcontrollers allows us to reach our target group. Based on the benefits discussed in the

previous section, game-based learning works as a means to transfer knowledge and skills

through an entertaining and meaningful learning experience. More specifically, studies that

have used Escape rooms as their learning tool have demonstrated their capacity to

stimulate positive emotions, increase the level of engagement and generate an overall

positive learning experience for learners (Llerena-Izquierdo & Sherry, 2022; Sánchez-Martín

et al., 2020). The encouraging results of such studies present opportunities for the CodER

project to be able to bridge the digital skills gaps and offer new opportunities to youth that

is at risk of exclusion.

Another point that is highly relevant to our efforts to create digital escape rooms is the

limitation of physical escape rooms. As Fotaris and Mastoras (2019, p.3) point out that "it is

not feasible or legal to lock a subset of a class in a room and wait until they puzzle their way

out (…), many escape rooms designed for the classroom have been stripped back to a group

table-top activity involving a series of locked boxes". But this solution lacks the immersive

character that is typical of escape rooms. There are also other challenges that need to be

resolved when implementing escape rooms for educational purposes, including time

commitment due to the labour-intensive process required to create escape rooms, time

constraints that limit playtesting which may lead to even more problems such as poor

design and unbalanced difficulty, and lastly, large group sizes which complicate the way in

which students are going to participate in the escape room or how engaging it will be

(Fotaris & Mastoras, 2019). In this view, the digital escape room generator that will be

created as the end-result of this project resolves the majority of these constraints and

allows youth workers greater flexibility to design such spaces to match their learners’ needs.

Moreover, Llerena-Izquierdo & Sherry (2022) highlight that the lack of design guides and

experience from users are two limiting factors for the wide adaptation of such tools in

formal, non-formal, and informal educational contexts. This is another important point that

we attempt to address with the creation of this module as a first step, and the other

expected project results that will equip youth workers with the necessary knowledge and

skills to instil new knowledge to youth.

1.3. The audience and target group of these activities

The audience that the CodER project is addressing is members of local, national, European

youth organisations. This includes all types of professionals working for a youth

organisation, dealing with disadvantaged groups such as NEET, early school leavers,

migrants, refugees and asylum seekers, and ex-prisoners. Also, youth organisations that are

P a g e | 9

focusing on the provision of non-formal education related to technology and innovation,

youth organisations and/or youth centres that are seeking to increase youth employability

and youth organizations dealing with STEM education are also part of the target audience

along with youth workers dealing with programming, microcontrollers, educational escape

rooms. Additionally, the target audience of CodER extends to IT experts, representatives of

ICT start-ups, scientists, researchers, university staff, opinion makers, and influential

multipliers such as coding associations, innovation centres, representatives of state bodies,

small and medium-sized enterprises, social and sectoral bodies, product marketing experts

and local municipal employees.

Through this audience, we aim to reach our target group, which is young people, to instil the

knowledge gained by youth organisations to them. The target group includes young people

who belong to displaced populations (migrants, asylum seekers, refugees, minority

populations), young people who are generally at risk of socio-economic exclusion (early

school leavers, NEET, etc.) and young people with learning disorders. As it was mentioned

earlier, a large number of young people are struggling with unemployment due to a lack of

coding skills that employers are looking for in their employees. Therefore, this project is

designed in a way that will teach the basics of programming and microcontrollers to youth

organisations, provide them with a methodological and pedagogical guide on how to use

escape rooms to educate young people through a playful and entertaining experience,

create a series of different scenarios for them to use as templates or adjust them, and

create a digital escape room generator.

References

Calderón-Gómez, D., Casas-Mas, B., Urraco-Solanilla, M., & Revilla, J. C. (2020). The

labour digital divide: digital dimensions of labour market segmentation. Work Organisation,

Labour & Globalisation, 14(2), 7-30.

Centeno, C., Vuorikari, R., Punie, Y., OÂ, W., Kluzer, S., Vitorica, A., ... & Bartolome, J.

(2019). Developing digital competence for employability: Engaging and supporting

stakeholders with the use of DigComp (No. JRC118711). Joint Research Centre.

Corneliussen, H. G. (2021). Women empowering themselves to fit into ICT. In

Technology and Women's Empowerment. Taylor & Francis

Dichev, C. & Dicheva, D. (2017). Gamifying education: what is known, what is

believed and what remains uncertain: a critical review. International Journal of Educational

Technology in Higher Education 14, 9. https://doi.org/10.1186/s41239-017-0042-5

DigitalEurope (n.d.). Key indicators for a stronger digital Europe.

https://www.digitaleurope.org/key-indicators-for-a-stronger-digital-europe/

European Commission (2021a). Europe’s Digital Decade: digital targets for 2030.

https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/europes-

digital-decade-digital-targets-2030_en

https://doi.org/10.1186/s41239-017-0042-5
https://www.digitaleurope.org/key-indicators-for-a-stronger-digital-europe/
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/europes-digital-decade-digital-targets-2030_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/europes-digital-decade-digital-targets-2030_en

P a g e | 10

European Commission (2021b). Digital skills and jobs. https://digital-

strategy.ec.europa.eu/en/policies/digital-skills-and-jobs

Eurofound (2022). NEETs. https://www.eurofound.europa.eu/topic/neets

Eurostat (2020). Being young in Europe today – digital world.

https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Being_young_in_Europe_today_-

_digital_world&oldid=528990#Information_and_communications_technology_skills

Fotaris, P., & Mastoras, T. (2019). Escape rooms for learning: A systematic review.

In Proceedings of the European Conference on Games Based Learning, 235-243.

Karpinski, Z., Biagi, F., & Di Pietro, G. (2021). Computational Thinking, Socioeconomic

Gaps, and Policy Implications. IEA Compass: Briefs in Education. 12. International

Association for the Evaluation of Educational Achievement

Levels, M., Brzinsky-Fay, C., Holmes, C., Jongbloed, J., & Taki, H. (2022). The dynamics

of marginalized youth: Not in education, employment, or training around the world. Taylor &

Francis.

Liu, Z.-Y., Shaikh, Z. A., & Gazizova, F. (2020). Using the Concept of Game-Based

Learning in Education. International Journal of Emerging Technologies in Learning (iJET), 15

(14), 53–64. https://doi.org/10.3991/ijet.v15i14.14675

Llerena-Izquierdo, J., & Sherry, L. L. (2022). Combining Escape Rooms and Google

Forms to Reinforce Python Programming Learning. In Á. Rocha, P. C. López-López & J. P.

Salgado-Guerrero (Eds.), Communication, Smart Technologies and Innovation for

Society (pp. 107-116). Springer, Singapore.

Mcguire, D. & Gubbins, C. (2010). The Slow Death of Formal Learning: A Polemic.

Human Resource Development Review. 9. 249-265. 10.1177/1534484310371444.

Ninaus, M., Moeller, K., McMullen, J., & Kiili, K. (2017). Acceptance of Game-Based

Learning and Intrinsic Motivation as Predictors for Learning Success and Flow Experience.

International Journal of Serious Games, 4(3), 15–30.

Sanchez, E. (2019) Game-Based Learning. In: Tatnall A. (eds) Encyclopedia of

Education and Information Technologies. Springer, Cham. https://doi.org/10.1007/978-3-

319-60013-0_39-1

Sánchez-Martín, J., Corrales-Serrano, M., Luque-Sendra, A., & Zamora-Polo, F.

(2020). Exit for success. Gamifying science and technology for university students using

escape-room. A preliminary approach. Heliyon, 6(7).

https://doi.org/10.1016/j.heliyon.2020.e04340

Vasilescu, M. D., Serban, A. C., Dimian, G. C., Aceleanu, M. I., & Picatoste, X. (2020).

Digital divide, skills and perceptions on digitalisation in the European Union—Towards a

smart labour market. PLoS ONE, 15(4), 1–39. https://doi.org/10.1371/journal.pone.0232032

https://digital-strategy.ec.europa.eu/en/policies/digital-skills-and-jobs
https://digital-strategy.ec.europa.eu/en/policies/digital-skills-and-jobs
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Being_young_in_Europe_today_-_digital_world&oldid=528990#Information_and_communications_technology_skills
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Being_young_in_Europe_today_-_digital_world&oldid=528990#Information_and_communications_technology_skills
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Being_young_in_Europe_today_-_digital_world&oldid=528990#Information_and_communications_technology_skills
https://doi.org/10.3991/ijet.v15i14.14675
https://doi.org/10.1007/978-3-319-60013-0_39-1
https://doi.org/10.1007/978-3-319-60013-0_39-1
https://doi.org/10.1016/j.heliyon.2020.e04340
https://doi.org/10.1371/journal.pone.0232032

P a g e | 11

PART A: The CodER Coding Module (10 hours)

Description:

In this part, a comprehensive introduction to programming is provided along with its usage

and application based on real-life examples. The benefits of programming and its

application to the job market are initially explained, as well as the process followed by an

algorithm and program development. Then, the second subsection explains what Python is,

the usage of an Integrated Development Environment (IDE) and how to set it up. The rest of

the module is dedicated to the different data types, their usage and application through

examples, as well as the development of short programs.

Workload:

10 hours

Learning outcomes:

By the end of this course, learners will be able to:

 Recognise the value and usage of programming

 Comprehend the flow of execution in programs

 Use basic syntax to access, modify, and delete different data types in Python

 Use Python to build small programs

Required material and resources:

 Computer or laptop

 Internet Access

 Spyder

 Visual Studio Code

Practicalities:

This part of the module is designed to cover 10 hours of learning. Each section of the

module has a designated time, but the learner or educator/trainer is free to decide how

much to spend on each subtopic depending on prior knowledge and engagement in similar

topics. The content is based on progressive development and is used to provide basic

knowledge and skills to beginners.

Subsections:

1. Introduction to Programming

2. Getting Setup with Python

3. Basics to programming in Python

P a g e | 12

1. Introduction to programming

 Number of participants: 1-10 per facilitator

 Duration: 0.5-0.75h

 Teaching methods: Lecture, presentation

 Required materials: Presentation

1.1. What is programming

Programming is the process of creating a program dedicated to completing a specific task

through a computer.

Programs include a step-by-step procedure, usually described as creating a recipe, that is

used to communicate with the computer by using a series of predefined syntax and

functions.

You might think that this sounds overly complicated, but it is not. It is like learning a new

natural language from scratch, you have to understand its syntax and vocabulary to be able

to use it properly. An equally important aspect is practising your skills to get better at any

natural or programming language that you are learning.

Natural language (English) Programming language

John reads every day print(“Hello, World”)

Table 1 - Comparison between natural and programming language

1.2. Why learn programming? What are the benefits?

You might be wondering what the purpose of learning a programming language is and the

benefits that it entails.

According to Steve Jobs: "Everyone in this country should learn to program a computer

because it teaches you to think". Based on this quote, one of the major benefits of

programming is that it develops computational thinking. Computational thinking “refers to

one’s ability to identify, test, and implement possible algorithmic solutions to the problem

at hand and to analogous problems that might arise in a new context or situation” (Karpinski

et al., 2021, p. 3). This also directly relates to problem-solving skills, which are considered as

desirable and fundamental skills to have to be able to adapt to the changes and demands of

the current labour market (as cited in Karpinski et al., 2021; Czaja and Urbaniec, 2019;

Rakowska and Cichorzewska, 2016; Slavinskis et al., 2015). Problem-solving skills are held in

high esteem amongst employers, and they are considered to be one of the most important

soft skills of the 21st-century.

P a g e | 13

The ability to use a programming language does not signify that everyone needs to become

a programmer, but that programming can be beneficial to any career and can open up new

career pathways.

The flexibility that programming allows is another one of its major assets since new job

opportunities will emerge that are more code-oriented. In addition to this, basic knowledge

of programming will be necessary for any job in the future. This increases its value as a

fundamental skill to tomorrow’s society and labour market.

Any person that is feeling stagnant in their career can learn a programming language to

increase their income and career prospects, as well as take their problem-solving skills a

step further. Therefore, programming is an all-encompassing skill that requires both

technical and soft skills and can be learnt by anyone that is willing to try.

1.3. The process of program development and algorithms

If you are still reading this module, then let us explain what an algorithm is and how a

program is developed.

Algorithms are an integral part of programs since they represent the steps that are required

to complete the task specified by the code. A good algorithm must include the following:

the steps or activities that are required to complete the task, the correct order of those

activities and their termination. A frequent example that is used to understand the process

of an algorithm is a recipe. The following recipe of “Bake a Cake” can be translated into an

algorithm:

Figure 1 - Visual representation of an algorithm

As you can see the order of every activity or step is based on a logical order. For instance,

you cannot place the pan in the oven without first putting the ingredients into the pan; not

if you want to have a fruitful procedure. The same applies to algorithms, every step or

activity has a purpose to serve, and they should have a proper order for the algorithm to

P a g e | 14

work as we want it. The description above is also called pseudocode, which is used to

explain the process followed by an algorithm.

Another important aspect is the pattern followed to design a specific algorithm, which

usually involves the Input, Process and Output (IPO) Pattern. The algorithm begins by

reading data, moves on to data manipulation, and ends by displaying a result. For example,

suppose that you want to calculate the course grades of your students: you would first go

through their scores on every test (input), then calculate their average grade (process), and

finally, show their average grade (output). This is a very useful pattern to consider when

creating an algorithm.

Figure 2 – IPO Pattern

Since we have learnt what an algorithm is and the process required to create a good

algorithm, we can now understand a bit better how to develop a program. Program

development goes through a cycle that includes analysis, design, coding, debugging and

testing, and implementing and maintaining the proposed solution.

Figure 3 – Program Development Cycle

P a g e | 15

In the first step, we are trying to understand, identify and analyse the problem that requires

a computational solution. The second step is all about designing the program, which entails

creating a visual diagram of the process that the program will follow. This is particularly

useful to help you break the problem into smaller parts. The next step is coding the program

based on the visual diagram that we created in the previous step. The computer user will

run the code for this step to spot any problems. In the fourth step, the user must start

debugging the program in order to avoid potential errors. The fifth step requires the user to

run the program and make sure that there are no syntactical or logical errors. The final and

sixth step revolves around documentation and maintenance of the program, which requires

an explanation of the program’s rationale and its processes.

If there are some things that you have not understood from this process, do not worry.

Once we start practicing, it will become clearer. In this module, we will focus on the first

three steps. Therefore, we will try to explain the process of analysing a problem and

developing a program that can serve as a potential solution.

1.4. Programming languages – The Most In-Demand Programming Languages

According to an analysis of thousands of job openings in the US and Europe, Python has

been ranked as the most in-demand coding language for 2022, followed by Java and

JavaScript. While results suggested that demand for C, C++, and C# was not as strong, it was

still existent for selected professions. While Python has been around for decades, its

demand in 2022 will continue to grow thanks to its exponential use in the thriving industries

of data science, machine learning, and AI.

Figure 1 - Most In-Demand Programming Languages

Source: https://www.siliconrepublic.com/careers/python-most-in-demand-coding-language-2022

https://www.siliconrepublic.com/careers/python-most-in-demand-coding-language-2022

P a g e | 16

2. Getting Setup with Python

 Number of participants: 1-10 per facilitator

 Duration: 0.75-1h

 Teaching methods: Presentation, Guided instruction, Experiential learning

 Required materials: Presentation, Computers (1 per participant) and stable

internet connection

Before we explain how to set up a Python Integrated Development Environment (IDE) and

how to run Python in a command line, we will briefly explain what Python is and why it is

the most used programming language in the labour market.

2.1. What is Python?

Python is a high-level programming language that allows greater flexibility and readability

when coding and can be easily adapted on different kinds of computers with none or a few

potential modifications. Other high-level languages include C, C++, and Java.

The difference between high-level and low-level programming languages is that computers

execute programs written in low-level languages. Low-level languages use binary coding

(0,1) to execute a program. However, that is not easy to interpret for a human unless they

have the expertise. Therefore, programs that are written in high-level languages have to be

transformed or translated into a binary form for the computer to understand what to do.

This requires some extra processing time, but it is a relatively small disadvantage of high-

level languages.

Generally, there are two ways that a program is translated into binary form to be executed.

The first one involves using a compiler where the program is read and translated before it

runs. As illustrated in the figure below, the process starts from the source code (for a high-

level program) moves on to the object code or executor (which translates program into

binary form) and goes back to compile the program to be executed as output without

further translation.

Figure 2 –

Figure 5 - Compiler language (Adapted from Downey et al., 2002, p.30)

The second way uses only an interpreter as mediator between the source code and the

output. The interpreter essentially reads the program and follows its instructions line by

P a g e | 17

line. This is an ongoing back and forth process until the program is finished, as you can see

in the figure below.

Figure 6 - Interpreter language (Adapted from Downey et al., 2002, p.30)

Python uses the interpreter to execute its programs and thus, it is considered an interpreted

language. This can either be done by the command-line mode or the script mode. In the

command-line mode, you write your code, and the interpreter prints the end-result. On the

other hand, the script mode uses a program that contains a file ending in .py and uses the

interpreter to execute the contents of the file. It should be noted that most Python

programs end in .py, however, it depends on the Integrated Development Environment

(IDE) that you are using.

In this module, all the examples use the command-line mode to execute programs instantly

and understand the process better. Once you complete a program, you can save it to be

able to run it as a script later on.

2.2. The most used Python Integrated Development Environments (IDEs) per industry

In the previous section, we have mentioned Integrated Development Environments (IDEs),

let us briefly explain what an IDE is. An IDE is essentially a software application that contains

various facilities to computer programmers to develop their software such as a source code

editor, build automation tools and a debugger. If it all seems to not make much sense right

now, do not worry. Once we start practicing, you will have a better understanding of

everything we have explained so far.

Depending on the industry, there are different Python IDEs that are preferred. Some of the

factors that are taken into account when a company or organisation is choosing an IDE are:

the intended use of the IDE such as Web Development, Data Science, Scripting or Quality

Assurance; the Operating System that it uses (i.e., Linux/macOS, Windows, or mixed OS);

whether the hardware is good or bad; and the level of the person that will be coding (e.g.,

beginner, intermediate or advanced).

P a g e | 18

Figure 7 - Most used IDEs per industry

(Adapted from https://www.geeksforgeeks.org/top-10-python-ide-and-code-editors-in-2020/)

2.3. Setting up a Python Integrated Development Environment (IDE)

In this module, you can use either Spyder (https://www.anaconda.com/products/individual)

or Visual Studio Code (https://code.visualstudio.com/) as they are usually used for

beginners to familiarise themselves with Python in a user-friendly environment.

However, if you are not ready to commit to an IDE, you also have the option of using online

text editors such as the following:

● Python.org

● Programiz

● Tutorialspoint

We recommend using an IDE, because it is easier to keep track of your files and progress as

you start coding.

2.3.1 Installing Visual Studio Code

1. Go to this website: https://code.visualstudio.com/

https://www.geeksforgeeks.org/top-10-python-ide-and-code-editors-in-2020/
https://www.python.org/shell/
https://www.programiz.com/python-programming/online-compiler/
https://www.tutorialspoint.com/execute_python3_online.php
https://code.visualstudio.com/

P a g e | 19

2. Once the page loads, you will see the Download button. It automatically chooses

your Operating System; however, you can click on the arrow next to it and change it

according to your needs. Be sure to download the stable built!

Figure 8 – Downloading Visual Studio Code

3. When the download is completed, open the file and follow the setup instructions.

Figure 9 – Installing the IDE

P a g e | 20

4. Once the program has finished installing, you can open it or it will launch

automatically.

5. Select File→New

Figure 10 – Creating a new file in Visual Studio Co

6. Click on select a Language and pick Python

Figure 11 – Selecting the programming language

P a g e | 21

7. Once you select Python, you will be redirected to install Python.

Figure 12 – Installing Python from Extensions

8. Once you install Python, you are ready to start coding!

For more information, you can also consult their website on how to get started:

https://code.visualstudio.com/docs/introvideos/basics

2.3.2. Installing Spyder from Anaconda

1. Go to this website: https://www.anaconda.com/products/individual

2. Once the page loads, you will see the Download button. Depending on your

operating system, choose the corresponding version. We recommend the 64-bit

graphical installer.

Figure 13 – Downloading Anaconda Distribution

https://code.visualstudio.com/docs/introvideos/basics
https://www.anaconda.com/products/individual

P a g e | 22

a. For more information on the steps required for Windows, follow this link:

https://docs.anaconda.com/anaconda/install/windows/

b. For macOS users, follow this link:

https://docs.anaconda.com/anaconda/install/mac-os/

c. For Linux users, follow this link:

https://docs.anaconda.com/anaconda/install/linux/

3. When the download is completed, open the file, and follow the setup instructions.

Figure 14 – Installing Anaconda

4. Once the program has finished installing, you can open the Anaconda Navigator.

5. Once the Navigator has loaded, select the Spyder application and click Launch. If it is

not installed, click the Install button to install Spyder.

Figure 15 – Anaconda Navigator

https://docs.anaconda.com/anaconda/install/windows/
https://docs.anaconda.com/anaconda/install/mac-os/
https://docs.anaconda.com/anaconda/install/linux/

P a g e | 23

6. When you open Spyder, you can select to take a tour or dismiss.

Figure 15 – Opening Spyder for the first time

7. Now you can start coding!

For more information, you can also consult the Anaconda starter:

https://docs.anaconda.com/anaconda/user-guide/getting-started/

We are sure you were able to complete this step easily!

2.4. Running Python in Command line

Now it is time to run our first program. You might be wondering if it is that simple. The

answer is: Yes, it is!

Simply type the following:

Now, you can run it. It should print on the console: Hello, World!

https://docs.anaconda.com/anaconda/user-guide/getting-started/

P a g e | 24

3. Basics to programming in Python

 Number of participants: 1-10 per facilitator

 Duration: 8.00h

 Teaching methods: Presentation, Guided instruction, Experiential learning

 Required materials: Presentation, Computers (1 per participant) and stable

internet connection

After you have successfully run your first program, we will continue to learn more about the

basic functions of Python and the logic behind them.

3.1. The Basics: Data Types (Basic and Complex)

Data types are an important concept in the programming world since they determine how

the data can be manipulated. The built-in data types in Python fall into the following

categories:

Table 2 – The different data types of Python with examples (adapted from

https://www.w3schools.com/python/python_datatypes.asp)

General groups of

data types

Specific data types used

in Python
Examples

Text str
“Hello, World!” (a series of strings,

always use quotation marks)

Numeric int, float, complex

3 (integer-int), 3.2 (float – includes

decimals), 2j+3 (includes both

characters and numbers)

Sequence list, tuple, range

[“apple”, “cherry”, 1, 1] (list;

sequence of elements of any type), ()

(tuple; ordered collection), range(5)

(iterates over sequence of number,

has a starting and ending point (5))

Mapping dict

{"brand": "Ford"} (dictionary;

unordered collection of key-value

pairs)

Set set, frozenset

{“apple”, “cherry”, 1} (set;

unordered collection of no duplicate

items of any type separated by

commas)

Boolean bool True or False

Binary
bytes, bytearray,

memoryview
used to manipulate binary data

https://www.w3schools.com/python/python_datatypes.asp

P a g e | 25

These are all the built-in data types that exist in Python. We will go through all of these

except the last group, binary, since the others are most useful for beginners to understand.

3.2. Variables, expressions, and statements

Variables

Variables essentially contain data that we assign to them in the form of names to make our

code more readable and be able to utilise a particular variable more times than one.

We write the name that we want to assign to our variable, use the equal sign (=), and put

the value that we want to store on the right side of the equal sign.

Example:

Here, variable x equals 5 and print(x) prints the value contained in x (i.e., 5).

*Keep in mind that Python is case-sensitive, therefore x and X will not be considered the

same variable.

Remember the data types that we just saw, you can write the following to see the data type

of the variable x that we just created:

The console will show: int

Suppose that you want to create 3 variables where one contains an integer, another a float

and another a string. You would write the following:

Now if we try to run this, the console will not show anything. You might be thinking why

that is, it is simply because we have not called the variable, but we only assigned a value to

it. To see what our variable contains, we need to use print (variable name) to instruct

Python to display it. Otherwise, it will not.

Example:

Or you can print them all together like this:

P a g e | 26

We can give any name to our variable, and we are not limited to only one word.

However, you should not use too long variable names because it is not convenient for you

or the reader.

Try to keep the variables’ names short and understandable. If you want your variable name

to be two separate words, simply use underscore in between, i.e., my_age.

*Keep in mind that Python does not allow variable names to start with numbers or

include special characters such as @, #, $, etc.

There are also some other keywords used in Python that cannot be used as variable names,

since they are reserved for specific functions. These keywords are:

and def exec if not return

assert del finally import or try

break elif for in pass while

class else from Is print yield

continue except global lambda raise

Table 3 - Reserved Keywords in Python (Adapted from Downey et al., 2002, p. 15)

Statements

We have seen two statements used in Python so far: print and variable assignment. The

commands given to the Python interpreter to be executed are called statements.

As we have already mentioned, statements, such as variable assignment, do not produce a

result. However, the print statement produces a result, which is the value of the variable.

A sequence of statements is considered a script that either produces results or not,

depending on the type of statements used. The results are displayed based on the order of

the statements.

For example, if you type the following statements:

You would get as output:

John

35

The height variable is only saved as a variable but does not produce any result.

P a g e | 27

Expressions

There are different kinds of expressions used in Python. Expressions involve a combination

of different variables, operators and values (operands) that produce another value as

output.

As an example, let’s try to add two numbers without assigning them variable names or use

the print statement:

Output:

Here, we can see that Python will not produce an output. Therefore, it is necessary to have

variables, operators and values to have an expression.

If you want to have a result from 2+2, then you need to either include the print statement

or assign a variable name and print it.

Example:

In the example of 2+2, we are asking Python to evaluate the expression. But if we simply

wrote 2 and 2 in separate lines without the operator (+), no result would be produced. Even

if the statement is considered legal, it does not produce an output.

Consider the following script:

Here, the only output you would get is 5 from the last line of 3+2. What can we add to the

script to show all the expressions on the console as output?

Hint: we have already used it multiple times by now

Operators

It is time to explain some of the operators used in Python, such as the addition sign (+) that

we used earlier. Operators are the special symbols that represent mathematical

computations, which are the following:

addition (3+20) subtraction (x-6) multiplication (3*5) division (10/5) exponentiation (4**2)

P a g e | 28

You can also use variable names that contain integers or floats, instead of plain integers to

perform operations.

Example:

Output: 33

To find the average grade based on the 2 course grades, we need to add them and then

divide them by 2. How do you think this can be done? Take a minute to think about it.

Answer:

Output: 16.5

This example also demonstrates that Python recognises the order of operations, which

dictates that parenthesis is of the highest precedence instead of division that is located

outside of the parenthesis.

In Python, the precedence is as follows: 1) parenthesis, 2) exponentiation, 3)

multiplication/division and 4) addition/subtraction.

It should be noted that when the operators hold the same precedence, they are evaluated

from left to right. For instance, consider the following operation: 5*30/60. This equals to

2.5, which shows that the multiplication happens first (=150) and then the division that gives

the end-result.

Practice: https://www.w3schools.com/python/exercise.asp?filename=exercise_variables1

Operators that work on strings

Even if a string is considered to be a number (i.e., ‘15’), you generally cannot perform the

above-mentioned operations on strings.

However, the addition (+) and multiplication (*) operators have a different effect when

applied on strings. If you use addition between two variables that contain strings, they will

be concatenated. This means that they will be joined as one sequence of strings.

Example:

https://www.w3schools.com/python/exercise.asp?filename=exercise_variables1

P a g e | 29

Output: Emma Smith

*Keep in mind that if the quotation marks and the strings do have any space between them,

you will end up “EmmaSmith” instead of “Emma Smith”. Therefore, spaces are also part of

strings.

When used on strings, the multiplication (*) operator performs repetition.

Example:

Output: FirstFirstFirst

For this to work, you need to use an integer to specify how many times to repeat the string.

Comments

As programs grow, it becomes more difficult to track down and make sense of the

algorithms used to produce an end-result. Thus, comments are useful to explain the

rationale and process of the program in natural language. Think of comments like adding

notes wherever needed to make your code more readable, you just have to add a hashtag

(#) symbol for small comments.

Example:

You can also add a comment on the same line as the code:

Whatever you write after hashtag (#) symbol is ignored and is not executed as code by the

program.

Another option that can be used for larger parts of text is adding 3 quotation marks (“””)

before and 3 (“””) after the text is finished.

Example:

The use of comments is a useful practice for any professional that works with coding.

Practice:

https://www.w3schools.com/python/exercise.asp?filename=exercise_comments1

https://www.w3schools.com/python/exercise.asp?filename=exercise_comments1

P a g e | 30

3.3. Lists, Dictionaries and Tuples

In this section, we will see how to use lists, dictionaries and tuples in Python. As we have

seen earlier in the data types section, list and tuples fall within the sequence group and

dictionaries within the mapping group. All these data types have different features and

qualities that allow for data manipulation in different ways.

3.3.1. Lists

Lists are initiated with the use of square brackets [] and contain a sequence of ordered

items in one variable.

Example:

The items included in a list are ordered, mutable (i.e., changeable), and allow duplicate

values.

Each item in a list is identified by an index. The index starts from [0] and goes up by one

each time; thus, the first item on the list has an index [0] and the second one [1] and so on.

It should be noted that their order cannot be changed. When new items are added, they will

be put at the end of the list.

Also, lists are mutable, which means that items can be modified, removed or added after

the list has been created. Since they allow duplicate values, you can find a value more than

once in a list.

Example:

Lists can also contain a combination of integers, strings or boolean values:

If you want to determine the number of items contained in a list, you can use the len()

function:

* Keep in mind that the number of parentheses need to match from the beginning to end

for the code to be executed.

If you notice the code in this example, we have one beginning at the len() function and one

within the list, so that is why you see two closing parenthesis at the end of the code.

You can also use the list() function to initiate a list:

P a g e | 31

* Notice that here you need to add a double parenthesis when using the list() function to

create a list.

Access items in lists

If you want to access an item in a list, you need to use their index number.

Let’s use the employee1 list that we created earlier to get the age of the employee, which is

the second item in the list, in the following example:

* Do you remember why we are using 1 instead of 2 as the index number for the second

item on the list? It is because the index starts from 0 in lists.

If you have a long list of items and you want to get the last item from the list, you can use

negative indexing. This means that it will use -1 to access the last item found in the list, -2 to

get the second last item, and so on.

Example:

You can also specify a range of indexes that indicates from which index number to start and

to which index number to end the range.

Example:

In this example, it will start from the third item on the list and end on the last one since we

only have 5 items on the list. Always remember that the numbering starts from 0.

If you decide that you do not want to specify the beginning index number, the range will

start from the first item found in the list:

You can also only specify the beginning index number without an ending index number:

Remember when we introduced negative indexing, you can also use that to access items on

a list from the end of the list:

This will get us the fourth item from the end until the last one found in the list.

P a g e | 32

You can also check if an item exists in the list. From the adjectives list that we created

earlier, let’s say that we want to check if beautiful is included in the list:

Add items to lists

If you want to add new items to the end of the list, you can use the append() method. Let’s

say that we want to add a new adjective to the adjectives list, we will do the following:

You also have the option of adding new items by specifying the index number. You can do

this by using the insert() method:

As you can see here, you first specify the index number and then the item that you want to

add separated by a comma.

Another method that can be used when adding items from another list to the current list is

extend(). Let’s say that we have a general list of words and we want to add the adjectives

into the general list of words that we have:

Modify lists

If you want to modify a specific item found in a list, you need to refer to its index number. As

an example, we will use the employee1 list to modify the age of the employee:

You can also change multiple items in a list within a specified range. You can do this by

defining the new items to be added and refer to the index numbers that you want to be

modified.

For instance, we are going to modify the first three items of the employee1 list, because

that employee is no longer working in that company:

P a g e | 33

Remove items from lists

If you have decided to remove a specified item from a list, you can use the remove()

method. Let’s say that we want to remove the boolean value from the employee1 list:

You can also remove an item by specifying its index number with the pop() method:

If you do not specify an index number, then the last item found in the list will be removed:

As an alternative, you can use the del keyword to remove an item with a specified index:

Also, you can use del to delete the entire list:

However, you might want to empty the contents of the list. In this case, you can use the clear()

method:

Copy lists

There are two ways that you can copy a list with a new variable name. The first one is by using

the copy() method:

The second way that this can work is by using the list() method:

P a g e | 34

Sort lists

If you want to sort a list in alphanumerical order, either descending or ascending, you can use

the sort() method.

*Note that the sort() method will list items in ascending order by default, if not specified

otherwise.

Let’s use the words list to sort it in alphabetical order in this example:

Another example that includes a numerical list:

These two examples will list in ascending order, i.e., from smaller to bigger or a to z according

to the data types.

If you want to sort a list in descending order, you need to specify it in the parenthesis by using

the keyword reverse = True. Remember when we mentioned booleans as data types, in this

case, it is used to enable the reverse option by stating that it is True since the default is False.

Example 1:

Example 2:

Sort is by default case sensitive, which means that all capital case letters are sorted before

the lower-case letters.

In this example, you might get some surprising results because of this:

To overcome this issue, you can use the case insensitive sort function, which is key = str.lower.

Here, it is using the data type string to make it lower case.

Example:

P a g e | 35

In addition, you can use the reverse() method to reverse the order of a list regardless of its

alphabetical order:

Join lists

Remember when we saw the arithmetic operators used and their effect on strings. One of the

methods to join lists is by using the addition sign (+):

Here, we created a new list by combining the two already-existing lists of adjectives and

words. Regardless of the data types found in either list, you can combine them with +

operator.

If you want to add items from one list to another, simply use the extend() method:

In this example, the words list is joined with the adjectives list. Therefore, the words list will

now contain both lists.

Practice: https://www.w3schools.com/python/exercise.asp?filename=exercise_lists1

3.3.2. Tuples

Tuples also contain a sequence of items in one variable like lists. Similar to lists, tuples are

also ordered. However, one key difference between lists and tuples is that tuples are

immutable (i.e., unchangeable). Tuples are contained in round brackets ().

Example:

In the real world, tuples are commonly used as a dictionary without keys to store data since

they are faster to iterate through and their items cannot be changed. Tuples also allow

duplicate values.

If you want to see how many items are in a tuple, you can use the len() function:

https://www.w3schools.com/python/exercise.asp?filename=exercise_lists1

P a g e | 36

When creating a tuple that contains only one item, you need to add a comma after the item.

Otherwise, Python will not recognise it as tuple. We will use the type function to determine

the difference between using the comma.

Example:

Similar to lists, tuples can contain items of any data type either in separate tuples or as a

combination like the example below:

An alternative way to create a tuple is by using the tuple() constructor:

* Note that when using the tuple constructor, you need to add double round brackets.

Access tuples

Items in tuples use indexing, which means that each item in the tuple corresponds to a

number. The indexing is based on the order of items and it starts from 0 for the first item and

goes up by 1 each time.

To access a specific item, you need to use square brackets and specify the index number:

*Remember that index number 1 in the tuple corresponds to the second item, i.e., 34.

You can also use negative indexing to access the last item of a tuple [-1] or the second last

item [-2] and so on.

This will display the “male” item in the tuple.

If you want, you can specify a range of indexes that indicates from which index number to

start and to which index number to end the range.

P a g e | 37

Example:

In this example, it will start from the second item on the list and end on the last one, since we

only have 4 items on the list. Always remember that the numbering starts from 0.

If you decide that you do not want to specify the beginning index number, the range will start

from the first item found in the tuple:

You can also only specify the beginning index number without an ending index number:

Remember when we introduced negative indexing, you can also use that to access items on

a list from the end of the list:

This will get us the fourth item from the end until the last one in the tuple.

You can also check if an item exists in a tuple, similar to what we saw in lists. Let’s say that we

want to check if beautiful is included in the adj tuple:

Add, modify, and remove items from tuples

Technically, you cannot add or remove items from tuples as they are immutable (i.e.,

unchangeable). However, there is a workaround. You just need to convert the tuple into a list,

modify it and then convert it back into a tuple.

Let’s see an example to understand this a bit better:

If you want to add items into a tuple, there are two ways that you can use. The first one

follows the same logic as the example we saw to modify an item found in a tuple.

Example:

P a g e | 38

The second way to add a new item is by adding a tuple to another tuple. You can create a new

tuple that contains the item that you want to add to the existing tuple and simply add it:

Here, we will see how we can remove items from tuples. The same logic applies as in the

previous examples of add or modify items in tuples.

Example:

In the following example, we will see how you can delete the tuple by using the del keyword:

When creating a tuple, we are assigning values or items to be contained in it. This process is

also called “packing” a tuple:

In Python, you also have the opportunity to extract the values into variables, which is called

unpacking:

* Note that the variable names must match the items contained in the tuple, otherwise

you can use an asterisk (*) to collect the rest as a list.

P a g e | 39

Let’s say that you want to extract only two variables from the tuple personal_info1, you can

use the asterisk:

If you add the asterisk to another variable name instead of the last, then values will be

assigned to the variable with the asterisk until the values left match the variables left:

Join tuples

If you want to join two tuples, you can use the addition operator (+):

You also have the option of multiplying the content of a tuple for a number of times by

using the multiplication operator (*):

Practice: https://www.w3schools.com/python/exercise.asp?filename=exercise_tuples1

3.3.3. Dictionaries

Dictionaries fall within the mapping group of data types since they can store data in

key:value pairs. They contain a sequence of pair elements which are ordered, mutable (i.e.,

changeable) and do not allow duplicate values. Dictionaries are marked by curly brackets {}.

* Note that dictionaries in Python 3.6 and earlier versions were unordered, but from

Python 3.7. they became ordered.

An example of a dictionary can be for translating English into another language. Let’s say we

want to translate from English to Spanish:

https://www.w3schools.com/python/exercise.asp?filename=exercise_tuples1

P a g e | 40

Another option is to create an empty dictionary and add elements one by one:

As we have mentioned, dictionaries do not allow duplicate values for their keys, i.e., “hello”,

in the eng2esp dictionary that we created above.

If you want to know how many items are in a dictionary, you can use the len() function as

we saw for lists and tuples:

Once again, similar to tuples and lists, dictionaries can contain any type of data:

As you can see here, we have int, strings, bool and list data types.

To determine the data type of the sofas variable, use type():

Access items in dictionaries

If you want to look up what “hello” is in Spanish, then you can use the following:

This will print out: “hola”

When looking up items in a dictionary, use their key name within square brackets:

Here “hello” is the key to the value “hola”.

P a g e | 41

An alternative method is to use the get() method to have the equivalent result:

If you want to see a list of all the keys that a dictionary contains, you can use the keys()

method:

Any changes made on the dictionary eng2esp will be reflected on the all_keys list that we

created:

Also, you have the option of getting all the values contained in a dictionary with the values()

method:

The same logic applies for the values in terms of changes. If we add a new value, it will be

added to the list of values that we created.

Another option that you have is getting all key:value pairs by using the items() method:

Again, any changes made on the dictionary either in its keys or values will be reflected in the

all_pairs list that we created.

If you are unsure whether a particular key exists in a dictionary, you can check:

Add, modify, or remove items from dictionaries

To add items in a dictionary, there are two ways that you can use. The first one uses a new

index key and its corresponding value to be added:

P a g e | 42

The second way is to use the update() method, where you need to specify the dictionary, or

the iterable pair of key:value:

*Note that the curly brackets after the parenthesis are needed to indicate the key:value

pairs of the dictionary.

If you want to modify items in a dictionary, the same options as described above are

available. The first option is to refer to the key name to change a specific value. For

example, if a sofa was sold, you can change the quantity of sofas in store:

The second option refers to the update() method:

There are 3 different ways to remove items from dictionaries. The first one uses the pop()

method:

The second way is to use the del keyword:

The third way available removes the last item added in Python 3.7. However, in earlier

versions, a random item will be removed instead.

Example:

If you want to completely delete a dictionary, you can use the del keyword:

Another option that you have is to simply empty the dictionary by using the clear() method:

P a g e | 43

Copy dictionaries

Remember when we talked about copying lists and we said that you cannot copy one item

to another by using the equal sign (=) because the changes of one list will be done on the

other one. Similar to lists, dictionaries should not be copied that way. There are two ways to

make a copy of a dictionary.

The first one is to use the copy() method:

The second way is to use the dict() function:

3.4. Conditionals and Loops

In this section, we will explain the logic and usage behind conditional statements and loops,

which are considered essential and useful knowledge in general-programming languages.

 Conditional statements use the statements if, elif, else.

 For and while are used for loops.

Before we explain conditionals and loops in detail, we will learn some useful operators that

are commonly used in these statements: boolean expressions (==) and logical operators

(and, or, not).

3.4.1. Boolean expressions

A boolean expression is used to determine if an expression or statement is either true or

false. There are two ways to write boolean expressions, the first one uses the == operator to

compare two values and return a boolean value:

Output:

True

Output:

False

In both statements, the == operator was evaluating if the two integers were the same (i.e.,

had the same value). As you can see, the first statement yielded True and the second

statement yielded False.

P a g e | 44

The == is one of the many comparison operators used in Python. The rest of the comparison

operators are shown below:

x > y x is greater than y

x < y x is less than y

x >= y x is greater than or equal to y

x <= y x is less than or equal to y

x != y x is not equal to y

You have probably come across these operators before, however, some of these symbols

have different functions in Python.

For example, if you want to see if a value is the same as another, you would not use a single

equal sign (=) because that would assign the value to the variable that is on the left-hand

side.

To compare values in boolean expressions, you need to use double equal sign (==).

Also, if you want to check whether a value is greater or equal (>=) to another value, you

need to put the greater (>) or less (<) than sign first and then the equal sign (=).

These are important distinctions in Python that you should remember to avoid errors or

unwanted surprises.

Let’s see some examples of these comparison operators with the keyword if:

In this example, we are comparing the variables x and y to see if y is greater x. Since we

already know that y is greater than x, we choose to print that as output.

* The indentation that occurs in the second line (i.e., the whitespace found in the

beginning of the line) is used to tell Python that this statement is part of that particular

block of code. Indentation is an important part of the Python syntax to avoid raising

errors.

Another keyword used in conditional expressions is elif, which is used as an alternative if the

first condition is not true. Let’s see an example of comparison operators with the keyword

elif:

P a g e | 45

In this example, we have the first condition that checks if y is greater than x. Since it is not,

the program moves to the second condition with elif (a combination of else and if) that

checks if x is equal to y, which is true and prints the corresponding statement.

The next keyword used in conditionals is else, which is the last option available if the

preceding conditions are not true.

Let’s see an example of else to understand how it works:

Here, you can see that the if condition is not true, then it moves on to the second condition

that is also not true and ends up with the final available option in else, which is true and

prints the corresponding statement.

Also, if you only have a short statement to execute, you can write it in only one line:

You can also do the same thing for a combination of if and else statements:

Another option is to include multiple else statements on one line:

3.4.2. Logical operators

Python includes 3 logical operators, as we have mentioned in the beginning of this section,

and, or, and not. These operators have analogous uses in natural languages that combine

one or multiple conditional statements.

P a g e | 46

Let’s see how and can be used with conditional statements:

Let’s see an example of the or operator that combines conditional statements:

Our next example is focused on the not operator:

3.4.3. Nested if statements

The statements that contain an if statement inside another if statement are referred to as

nested if statements. Let’s check out the following example to understand this:

Similar to functions, if statements should not be empty. However, if for a particular reason

you have an if statement without any content, use the pass statement to avoid getting

errors from Python:

Practice: https://www.w3schools.com/python/exercise.asp?filename=exercise_ifelse1

3.4.4. Loops

Python has two main commands to create loops: while and for.

The while loop is used when you want to keep executing as long as the condition is true. As

an example, let’s create a while loop that prints i as long as it is less than 10:

https://www.w3schools.com/python/exercise.asp?filename=exercise_ifelse1

P a g e | 47

In this example, we are saying to Python as long as i is less than 10, continue to print i and

increment by 1 each time the loop repeats.

*Keep in mind that if you do not increment i, the while loop will keep running without

stopping and you will end up in an infinite loop.

You can also use the break statement if we want to stop the loop even if the condition is

true:

Another available statement in loops is continue that will stop the current iteration and

move to the next one:

The else statement that we saw in the conditional statements can also be used in loops:

Practice:

https://www.w3schools.com/python/exercise.asp?filename=exercise_while_loops1

Loops that use the for keyword iterate over a sequence of items, which can be contained in

lists, tuples, dictionaries, sets, or strings.

Let’s see an example of this:

https://www.w3schools.com/python/exercise.asp?filename=exercise_while_loops1

P a g e | 48

In this kind of loop, you do not need to specify the index variable beforehand. An index

variable is, in this case, the singular version of nouns as the value to be fetched (i.e., each

item in the nouns list).

The for loop can also iterate over a string as sequences of characters:

The break statement that we saw earlier can also be combined with a for loop:

In this example, when the loop encounters the noun “chair”, it will stop iterating before

going through all items in the list.

If you had put the break statement prior to the print part, what do you think would happen?

Try it for yourself:

Another statement that we saw earlier is the continue statement, which interrupts the

current iteration to move on to the next one:

The range function is quite useful when you want to specify the number of times that you

want the iteration to occur. The range function’s default starting point is 0, which increases

by 1 at each iteration and ends at a specified number:

* Keep in mind that because the range starts from 0, it will stop at the number 9. If we

actually want it to go up to 10, we would use range(11).

You have the option of specifying the starting and ending range:

Here, the range starts from 2 and ends at 9, since 10 is not included in the range.

P a g e | 49

Another option that you have is to adjust by how much the number increases at each

iteration:

In this example, we specified the range to start from 2 until 40 and increase by 2 each time.

Therefore, the number will stop at 38, since it cannot increase by 2 from 38 onwards.

In the for loop, you can also use the else keyword to specify what happens when the loop

ends:

Let’s try to use if and else in a for loop:

Do you think the else statement will be executed? Why or why not? Try it to find out!

Remember when we talked about nested if statements, you can also have nested loops:

As you can see, the inner loop will be executed one time during each iteration of the outer

loop.

Similar to functions and if statements, for statements should not be empty. However, if for

a particular reason you have a for loop without any content, use the pass statement to

avoid getting errors from Python:

Practice: https://www.w3schools.com/python/exercise.asp?filename=exercise_for_loops1

3.5. Understanding the flow of execution through functions

So far, we have seen a number of built-in functions used in Python such as print(), type(),

dict(), len(). Each function has one specific purpose and needs us to specify which variable

we want it to execute.

https://www.w3schools.com/python/exercise.asp?filename=exercise_for_loops1

P a g e | 50

Example:

In the print function, we need to specify in the parenthesis the variable x, which is the one

that we want to print. Whatever variable or variables are contained in the parenthesis are

called arguments or parameters.

These two terms are usually used interchangeably, but parameters are the variables listed

inside the parenthesis of a function, e.g., print(x), whereas arguments are considered to be

the values that are sent to the function when we call it.

Even though Python's built-in functions are quite useful, they cannot always solve all the

problems that we want them to solve. Therefore, we have the option to create new

functions to solve specific problems, which is considered one of the most beneficial aspects

of a general-purpose language.

A function contains a sequence of statements that produce a desired operation. The syntax

used for a function is the following:

>> def name(arguments):

 statements

Def means definition, it is essentially defining the name of the function along with its

argument(s) to produce a desired result when called. The built-in functions have already

been defined and thus, we cannot see the statements that they contain, only the produced

result or output.

When creating your own function, you are free to use any names that you want except the

Python keywords that we mentioned in earlier sections (Section 3.2.). The arguments used

in the parenthesis of the function provide the information required for the function to work.

Let’s see an example to understand the process followed by a function:

Here we have created a function without any required arguments that will print the text

specified in the second line of the code.

Remember when we talked about indentation in the previous section? The same logic

applies here where indentation indicates that the code to be executed is local to the

function.

P a g e | 51

Therefore, writing the statement print(“Hello, World!”) outside the function as we did in

previous examples would be considered a global statement. However, now that is written

within a function, it is considered local.

To call the function, we simply use its name followed by the parenthesis:

The output of this function will be:

Hello, World!

Let’s see another example with a specified argument inside the parenthesis of the function:

When the function is called the country name is passed within the function to be printed as

we instructed. The argument country can be specified when we call the function:

Output:

I am from France

I am from Greece

I am from Germany

You can also specify the data type of the argument using the following syntax:

argument:datatype

Example:

When calling the function, Python is going to expect the country to be in the form of a

string. If it is not, it will raise an error.

In addition, you can have more than 1 argument. Let’s say that we wanted to specify the city

and country:

Notice that we included quotation marks with a comma to separate the city and country

from each other in order to not have the two words printed without a space. Since we have

P a g e | 52

specified 2 arguments, we need to call exactly the number of arguments specified in the

parenthesis, not more or less, for the function to work. Otherwise, it will raise an error.

Output:

I am from Paris, France

Another option that you have if you do not know the number of arguments to be included in

a function, simply add an asterisk (*) before the argument name in the function definition.

In this way, the function will receive a tuple of arguments and the items can be accessed

accordingly.

* These types of unknown number of arguments are called arbitrary arguments and are

often referred to as *args in Python documentation.

Here we specified 3 countries to be printed in separate sentences and in one sentence:

Output:

I have visited Ireland

I have visited France

I have visited Belgium

I have visited Ireland, France, Belgium

Another option available to you is to send arguments as pairs of key = value. In this way, the

order does not matter.

Example:

One more option available is the use of two asterisks (**) before the argument name in the

function definition if you do not know how many keyword arguments will need to be

P a g e | 53

passed. In this way, the function will receive the arguments in dictionary form and will

access them accordingly:

As you can see, you can add new arguments when you call the function. Keep in mind that

these types of arguments are called arbitrary keyword arguments and are often referred to

as **kwargs in Python documentation.

Furthermore, one more option that you have is to set a default parameter value. This means

that if we call the function without an argument, it will use the default value that we set:

An argument can allow any data type as an argument (e.g., string, list, dictionary, etc.).

Functions can also return values by using the return statement:

Since we have not specified the print function in our created function, we need to use it

when we call the function in order to get the produced result.

Generally, functions should not be empty. However, if for a particular reason you have a

function definition without any content, use the pass statement to avoid getting errors from

Python:

Practice: https://www.w3schools.com/python/exercise.asp?filename=exercise_functions1

3.6. Putting the pieces together - How to build a program

So far, we have learnt a lot of different statements, keywords, methods, and functions used

in Python. Now you might be wondering, how can we actually build a simple program? We

will go through the process of building a small program step by step, so you can understand

how to use what we have learnt.

https://www.w3schools.com/python/exercise.asp?filename=exercise_functions1

P a g e | 54

We want to build a program that:

1. reads a text file,

2. creates a dictionary that contains all the words of the text file and their frequency,

3. allows users to write a word and display its frequency,

4. provide an informative message if a word does not exist.

This might seem overwhelming at first, but do not worry! We will go through it step by step.

Here, we will learn how to create recursive functions, which means that the functions will

call each other to execute our program.

First, we need to call a module, which is called string. The built-in string module contains

several functions that allow you to manipulate strings in Python, which we will use to

remove all sets of punctuation later on.

There are many modules available in Python for a variety of purposes that you can call by

simply using the keyword import:

The first function will read the text file and create a dictionary:

We always try to give a function name that we can understand, and the filename argument

will be specified when we call it. The next line creates an empty dictionary. The local fin

variable calls the open function to go open the file and read it. The for loop in the next line

calls the next function that will process each line, create our dictionary, and return it.

It might sound a bit technical, but it is pretty simple. We essentially created a function that

will create an empty dictionary, read the filename, and process each line of the file to create

a dictionary.

Now, why do we want to process each line?

Because Python will differentiate between capital and lower-case words, as well as

punctuation points next to words, even if the word is the same such as “Love” and “love” or

“love,” and “love”.

P a g e | 55

Since we want to count the frequency of each word in the file, we need to make sure all

words are lowercase and all punctuation points (i.e., commas, full stops, exclamation marks,

etc.) are removed for the program to count correctly.

Let’s write a function that processes each line of our file:

Again, here we are using a for loop to iterate through each line of the text.

 First, we replace dashes with whitespace because they cannot be removed with the

string.punctuation function.

 Once we replace the dashes, we start by splitting the line into separate words and

take each word to remove punctuations, whitespace and then make it lower-case.

 After all the processing the word is added to the dictionary and if the word exists

you add 1, if not 0.

So far, we have created two functions that read, edit the text and create a dictionary of the

words’ frequencies.

At this point you assign to the variable dictionary the function that processes the text,

where you specify the text file’s name (i.e., ‘the_veldt.txt’). All the functions are connected

based on the variable dictionary that will contain all the words found in a given text with

their frequencies.

Now, we are done with 2 out of the 4 actions that we want the program to do, we only have

2 more left.

Now, we want users to be able to write a word and if the word exists in the text to display

its frequency, otherwise to inform the user that the word does not exist.

Let’s write a function that will compare our user’s input with the dictionary that we created:

This function is used to access the key and value of each dictionary item through a for loop.

If the key (word) is the same as the word written by the user, then it returns the value (i.e.,

P a g e | 56

the frequency of a given word). Otherwise, it returns a statement that the word was not

found and prompts the user to look for another.

Now for the last part of the code, we want the program to repeat until the user specifies to

quit. For this part, we will use a while loop that is not in a function.

We simply use the while True loop to keep the program going. Be careful when using a

while True loop because you might end in an infinite loop. While True signifies as long as

this is true, continue to execute the program.

We assign a variable for the user input in order to be able to compare it with the keys of the

dictionary (words) and whatever the user inputs will be converted into lower case when the

program reads it. The reason for that is that a user might write a word in all capital letters

and the program will not produce a result, because Python does not recognise that they are

the same word, as we have mentioned Python is case-sensitive.

The next line says that if the input is not equal to ‘q’, then print the results of the function

that retrieves the frequency and move on to the next iteration. Otherwise, if the user’s

input is q, it stops the program (i.e., break the loop).

Depending on who is writing the code, this small program could have been written in

different ways. We have tried to incorporate as many of the things that we have learnt here,

as well as introduce recursive functions and how to break your program into small and

manageable pieces of code.

* Keep in mind that when writing code, you should try to run each small part of your code

to catch potential errors before you continue to the next part.

Once you complete your program, you might need to go back and edit to remove some

experimental/beginning parts of the code or consolidate multiple statements to make the

program more compact and easier to read.

3.7. How to adjust a program to fit your needs

We have seen how to build a small program in Python, however, sometimes you might

encounter programs that are already written, and you might need to make adjustments to

the code to improve or change the end-result.

Depending on who wrote the code and how long it is, this can be a difficult and

overwhelming procedure.

P a g e | 57

You can follow the same logic as when building a program, where you take small parts of

the code to realise what each function does, if it is not clear.

Also, it is important to write comments when working with code as comments can be

extremely helpful to other people reading your code and to you as well.

So, what do you do when there are no comments on a program?

First of all, run the program to see what its output is and notice the libraries or modules that

are imported. Then, you should look for the starting point of the code and try to understand

the flow of execution. Another helpful tip would be to look at the variables that the program

holds and their usage throughout the program. After you have a good understanding of how

the program works, you can start editing.

* Be careful when you try to edit someone else’s function because you might end up

breaking it

A good practice when adjusting a program is not to use a specific number of variables, but

rather use *args and **kwargs to make your code more flexible and adaptable when

another user might need to adjust it. We have seen the use of these two variables earlier in

the module.

As a reminder, *args allows you to pass a varying number of positional arguments and

**kwargs allows you to pass a varying number of keywords. The importance of both is the

use of the asterisk(s) (* or **), the names can be anything you want them to be.

For some more tips and examples, check out the following websites:

● freeCodeCamp - https://www.freecodecamp.org/news/args-and-kwargs-in-python/

● DZone - https://dzone.com/articles/adding-functionality-to-legacy-code

● Codeacademy - https://www.codecademy.com/resources/blog/how-to-work-with-

code-written-by-someone-else/

3.8. Syntactic, Runtime and Semantic Errors – Handling Errors in Python

There are three very important different types of errors that can occur when writing a

program and it is useful to know their differences and how to spot them early on:

1. Syntax errors occur when Python is translating the source code into binary form and

indicates that some part of the syntax is wrong, e.g., indentation, missing a colon at

the end of a def statement or a missing parenthesis. Similar to natural languages,

when we use incorrect syntax in Python, we will get an error saying: invalid syntax.

Syntax errors are easier to spot, here are some things to look out for:

● Using a Python keyword for a variable name

● Missing a colon (:) at the end of for, while, if and def statements

https://www.freecodecamp.org/news/args-and-kwargs-in-python/
https://dzone.com/articles/adding-functionality-to-legacy-code
https://www.codecademy.com/resources/blog/how-to-work-with-code-written-by-someone-else/
https://www.codecademy.com/resources/blog/how-to-work-with-code-written-by-someone-else/

P a g e | 58

● Indentation within loops and conditionals

● Matching quotation marks for strings i.e., both double or single

● Check that you have not missed any quotation marks when writing strings

● Using one equal sign instead of two in a conditional statement

● An unclosed bracket in any lines of your code i.e.,),], }

If you cannot find the syntax error, create a new file and add your code line by line from the

beginning.

2. Runtime errors occur when the following apply: 1) the program does not do

anything, 2) the program enters into an infinite loop or recursion, 3) you get an

exception error or 4) you have added too many print statements.

Let’s see some ways that you can overcome or spot the root for any those instances:

● When your program does not do anything, make sure that you have called it

to execute in the interactive console

● If you enter an infinite loop, stop the program and add print statements

where you think the problem might be and try to use hashtags (#) in front of

pieces of your code to see what happens

● Exception errors fall into 5 main categories:

i. NameError where you are trying to use a variable that does not exist,

i.e., local variables;

ii. TypeError can occur for multiple reasons from using a value

incorrectly, mismatch between items in string format and converted

items or wrong number of arguments;

iii. KeyError can occur when trying to access an item in a dictionary using

a key that does not exist;

iv. AttributeError can occur when trying to access an attribute that does

not exist;

v. IndexError where there is mismatch between the index number of a

list, string or tuple and its length.

3. Semantic errors are usually the most difficult errors to figure out since the program

is running but does not produce the wanted outcome. You might have thought that

the order you put your statements in makes sense, however, Python might behave in

unexpected ways.

When running into semantic errors, it is helpful to do the following:

● Break down the code into smaller parts to figure out how the program is

behaving at each step

● Review your thoughts or notes on the logic behind each line of code

● Use print statements to see what the program is doing

P a g e | 59

● If you have long expression, use temporary variables to check the types of

variables

● Assign a variable to your expression before a return statement

● If you cannot figure out the error, take a short break or ask for help

3.9. Practice

One of the most important aspects of coding is practice. The more you practice, the better

you will become. Hopefully by the end of this module, you have a solid understanding of the

logic behind writing code, the different data types and their usage, as well as how to build

small programs using functions.

We encourage you to practice as much as possible in order to use coding to create your own

individual projects and improve your career prospects and success.

Ready to start practising? Happy Coding!

Here, you can find a list of different websites that you can use to practice your coding skills

further:

⇒ W3Schools - https://www.w3schools.com/python/python_exercises.asp

⇒ GeeksforGeeks - https://www.geeksforgeeks.org/python-exercises-practice-

questions-and-solutions/

⇒ PYnative - https://pynative.com/python-exercises-with-solutions/

References:

Downey, A. Elkner, J. & Meyers, C. (2008). How to Think Like a Computer Scientist: Learning

with Python. Green Tea Press: Wellesley, Massachusetts.

GeeksforGeeks (2021). Top 10 Python IDE and Code Editors in 2020.

https://www.geeksforgeeks.org/top-10-python-ide-and-code-editors-in-2020/

Karpinski, Z., Biagi, F., & Di Pietro, G. (2021). Computational Thinking, Socioeconomic Gaps,

and Policy Implications. IEA Compass: Briefs in Education. 12. International

Association for the Evaluation of Educational Achievement.

O’ Dea, B. (2021). Python named most in-demand coding language for 2022.

https://www.siliconrepublic.com/careers/python-most-in-demand-coding-language-

2022

Programiz. How to Get Started with Python? https://www.programiz.com/python-

programming/first-program

Real Python. Python args and kwargs: Demystified. https://realpython.com/python-kwargs-

and-args/

W3Schools. Python Tutorial. https://www.w3schools.com/python/

https://www.w3schools.com/python/python_exercises.asp
https://www.geeksforgeeks.org/python-exercises-practice-questions-and-solutions/
https://www.geeksforgeeks.org/python-exercises-practice-questions-and-solutions/
https://pynative.com/python-exercises-with-solutions/
https://www.geeksforgeeks.org/top-10-python-ide-and-code-editors-in-2020/
https://www.siliconrepublic.com/careers/python-most-in-demand-coding-language-2022
https://www.siliconrepublic.com/careers/python-most-in-demand-coding-language-2022
https://www.programiz.com/python-programming/first-program
https://www.programiz.com/python-programming/first-program
https://realpython.com/python-kwargs-and-args/
https://realpython.com/python-kwargs-and-args/
https://www.w3schools.com/python/

P a g e | 60

PART B: The CodER Microcontrollers Module (10 hours)

Description:

This part provides an introduction to microcontrollers, their usage and their application

based on real-life examples. The first subsection explains the components of a

microcontroller and its different types to familiarise learners with this concept. Then, it

moves on to the use of the Arduino software and how it connects to Arduino

microcontrollers in a step-by-step approach.

Workload:

10 hours

Learning outcomes:

By the end of this course, learners will be able to:

 Recognise what a microcontroller is and be able to identify the different types of

microcontrollers

 Differentiate between Analog and Digital Input/Outputs (I/0)

 Use basic syntax of Arduino IDE

 Execute different examples of Arduino IDE and microcontrollers

Required material and resources:

 Computer or laptop

 Internet Access

 Arduino Uno

 Arduino IDE

Practicalities:

This part of the module is designed to cover 10 hours of learning. Each section of the

module has a designated time, but the learner or educator/trainer is free to decide how

much to spend on each subtopic depending on prior knowledge and engagement in similar

topics. The content is based on progressive development and is used to provide basic

knowledge and skills to beginners.

Subsections:

1. Introduction to Microcontrollers

2. Fundamentals of programming with Arduino

3. Applications of Arduino

P a g e | 61

1. Introduction to Microcontrollers

 Number of participants: 1-10 per facilitator

 Duration: 1.5h

 Teaching methods: Presentation, Guided instruction, Experiential learning

 Required materials: Presentation, Arduino Boards and stable internet connection

1.1. What is a microcontroller

Before we explain what a microcontroller is, let’s consider the following questions:

• Were you ever curious about how gadgets work? What is the logic behind them?

• Have you ever wanted to know how systems that control elevators work or

electronic toys?

• Or even create your own robot or electronic signals for a model railroad?

• Have you ever wondered how weather data is captured and analysed?

Are you curious? Well, let’s get started then!

Microcontrollers can facilitate a better understanding of these electronic processes through

hands-on activities.

A microcontroller is a compact integrated circuit responsible for executing a specific

function in a device. It interprets the data it receives from its input and output (I/O)

peripherals through its central processor.

Microcontrollers can be found in a variety of systems and devices. Some applications of

microcontrollers can be found in cameras, motor controls, door locks, fire or smoke alarms,

or sensors of temperature, light, and colour.

Consider the example of a car with many microcontrollers to control individual systems such

as light sensors, anti-lock braking systems, power windows, or brake controls. A vehicle can

have as many as 50 microcontrollers responsible for specific operations that either

communicate with each other or with other more complex systems to perform appropriate

actions.

A microcontroller is essentially a small chip, which is comprised of the following elements:

1. The processor (CPU): A processor or central processing unit (CPU) is used to process

and execute various instructions that direct a microcontroller's function. It reads and

performs basic arithmetic, logic and I/O operations. It is also responsible for

transferring data to communicate commands to other components within a larger

embedded system.

2. Memory: The main function of a microcontroller’s memory is to store data in order

to send it to the processor and respond to its predetermined programming function.

A microcontroller has two main types of memory:

P a g e | 62

a. Program memory is the one that stores long-term information about the

operations that the microcontroller was programmed to execute. This type of

memory does not need a power source to work and stores information for a

long period of time.

b. Data memory or Random Access Memory (RAM) is used to store temporary

data during the execution of the program. This type of memory holds data as

long as the device is connected to a power source.

3. Input/Output (I/O) peripherals: The I/O peripherals are responsible for

microcontrollers’ communication with other components. The input ports receive

information and send it for further processing to the processor as binary data. Based

on the processor’s commands, the output ports execute the necessary tasks.

Figure 16 – Elements of a microcontroller.

Source: https://www.circuitbasics.com/introduction-to-microcontrolleres/

There are many examples of microcontrollers available in the market. Arduino, Scratch,

Microbit and Raspberry PI are amongst the most popular.

Here are their official websites for you to check them out in your own time:

• Arduino: https://www.arduino.cc/en/software

• Scratch: https://scratch.mit.edu/

• Microbit: https://microbit.org/

• Raspberry PI: https://www.raspberrypi.org/

In this module, we will focus on Arduino microcontrollers.

1.2. What is Arduino and its different types

What is Arduino

Arduino is an open-source platform used for building electronics projects. Arduino consists

of both a physical programmable circuit board (often referred to as a microcontroller) and a

https://www.circuitbasics.com/introduction-to-microcontrolleres/
https://www.arduino.cc/en/software
https://scratch.mit.edu/
https://microbit.org/
https://www.raspberrypi.org/

P a g e | 63

piece of software or IDE (Integrated Development Environment) that runs on a computer,

used to write and upload computer code to the physical circuit board, which is a great

platform for prototyping projects and creations (Green Steam Incubator, 2019).

Arduino boards hold the key to understanding electronic processes through hands-on

activities. This system was created by Massimo Banzi and David Cuartielles in 2005. It offers

an alternative to the otherwise expensive microcontrollers and allows you to build

interactive projects such as GPS tracking systems, light sensors, remote-controlled robots,

and electronic games.

The main components of Arduino are:

1. Software: The Arduino IDE is responsible for writing programs used to communicate

with your hardware. Board functions are controlled based on the instructions sent to

the microcontroller via Arduino IDE.

2. Hardware: Arduino boards come in various types and they can read analog or digital

input signals from different sensors to produce an output. Some examples of outputs

include activating a motor, turning LED on/off or locking/unlocking a door.

3. Programming language: The programming language used in Arduino is a simplified

version of C++.

Types of Arduinos

There are several kinds of Arduino boards available depending on the microcontroller used.

The differences are mainly presented in the following features:

● number of inputs and outputs (i.e., sensors, LEDs, buttons on a board)

● speed

● operating voltage

● form factor etc.

Some boards are solely designed to be embedded and do not offer a programming

interface. Others can be directly powered from a 3.7V battery, while others need at least 5V

to operate. Whatever their differences in these features, they can still be programmed

through the Arduino IDE.

A few examples of the different types of Arduino boards can be seen in the picture below.

P a g e | 64

Figure 17 – Different types of Arduino boards.

Source: https://techatronic.com/types-of-arduino-boards-arduino-uno-mega-mini-specification/

Among the most popular Arduino boards is the Arduino Uno. Even though it was not the first

board to be released in the market, it still remains one of the most actively and widely

documented boards.

Figure 18 – Arduino UNO.

Source: https://www.makerspaces.com/arduino-uno-tutorial-beginners/

1. Reset Button – Restarts any code that was loaded to the Arduino board

2. AREF – Stands for "Analog Reference" and sets an external reference voltage

3. Ground Pin (GND) – Closes the electrical circuit and provides a common reference

throughout

https://techatronic.com/types-of-arduino-boards-arduino-uno-mega-mini-specification/
https://www.makerspaces.com/arduino-uno-tutorial-beginners/

P a g e | 65

4. Digital Input/Output – Pins 0-13 can be used for digital input or output

5. PWM – The pins marked with the (~) symbol can simulate analog output

6. USB Connection – Powers your Arduino and uploads sketches

7. TX/RX – Transmits and receives data indication from LEDs

8. ATmega Microcontroller – Stores the programs (brain of the Arduino)

9. Power LED Indicator – Lights up when the board is plugged in a power source

10. Voltage Regulator – Controls the amount of voltage going in the Arduino board

11. DC Power Barrel Jack – Powers your Arduino with a power supply

12. 3.3V Pin – Supplies 3.3 volts of power to your projects

13. 5V Pin – Supplies 5 volts of power to your projects

14. Ground Pins – Close the electrical circuit and provide a common reference throughout

15. Analog Pins – Read the signal from an analog sensor and convert it to digital

Arduino Uno boards need to be connected to a power source to work. There are various ways

to connect the board to a power source such as directly through a computer via USB or in the

case of mobile projects via a 9V battery pack. The last method requires the use of a 9V AC

power supply to work.

Figure 19 – Power sources of Arduinos.

Source: https://www.makerspaces.com/arduino-uno-tutorial-beginners/

Another important component of the Arduino board is the breadboard, also called Solderless

Breadboard. It is used in the prototyping phase to assess the circuit's functionality and allows

for the temporary creation and experimentation of different circuit designs. The tie points

(holes) of the plastic housing contain metal clips connected to each other by strips of

conductive material. However, the breadboard is not powered on its own and needs to be

connected to the Arduino board via jumper wires. Also, these wires are used to form the

circuit by connecting resistors, switches and other components together.

https://www.makerspaces.com/arduino-uno-tutorial-beginners/

P a g e | 66

Figure 20 – Breadboard.

Source: https://www.makerspaces.com/arduino-uno-tutorial-beginners/

Figure 21 – Completed Arduino circuit.

Source: https://www.makerspaces.com/arduino-uno-tutorial-beginners/

1.3. Concepts: Input, Output, Analog, Digital

Inputs and Outputs (I/O) within a programming context

Input and Outputs represent the interactions between a robot/machine and the real world.

In simpler words, inputs are data the robot/machine receives and outputs are the results we

can see.

https://www.makerspaces.com/arduino-uno-tutorial-beginners/
https://www.makerspaces.com/arduino-uno-tutorial-beginners/

P a g e | 67

Inputs are usually transmitted by sensors such as switches, potentiometers or cameras,

whereas outputs refer to immediate actions initiated by motors, such as the LED lighting up

or the alarm going off.

Consider the following example: The keys on a keyboard represent inputs. While typing, the

computer receives information that is ordered. However, this process is not visible to us. The

computer or machine takes the input (i.e., whatever is typed) and outputs it on the screen.

In the Arduino context: A program can take a button as input, which will light up a LED light if

it is activated. The information processed by the button is not visible to you, but the led light

that turns on or off is proof of the output.

There are two types of Inputs/Outputs: Analog and Digital I/Os.

What is the difference between Analog and Digital I/Os

There are two ways to differentiate an Analog signal from a Digital signal:

1. By the sensor type

2. By the processing method (i.e., time and resolution)

1. Analog vs.Digital Sensors: A LED can either be ON/OFF or have variable intensity, such

as ON with low intensity or ON with high intensity.

⇒ If the sensor is a switch placed on the LED, it will control whether the LED will

be ON or OFF and will not detect anything else. This is a digital input.

⇒ If the sensor is an LDR (light dependent resistor), it will detect the light and will

convert it into an analog value that lies between 0-255. We can detect whether

a LED is at 0% (off) or at 100% (full brightness) and also read many other values

in between (e.g., 20, 23%, 86%). This is an analog input.

2. Analog vs. Digital Processing: To determine if it is Analog or Digital, simply check their

processing based on:

⇒ Time: Analog is continuously processing information and whenever input is

modified, the output is instantly changed according to the input. The update is

immediate. For Digital, processing will have a short delay until the system

registers the change. This delay is established by the "sampling frequency" and

controlled by a clock.

⇒ Resolution: Analog processing has infinite resolutions because it never stops

processing and has many different values. In contrast, Digital resolution works

with binary numbers, which means that it only processes two values and

signals.

P a g e | 68

Examples with LED light:

● Switch it on/off with analog processing: when the dimmer is activated, the circuit will

immediately change the LED's intensity accordingly.

● Switch it on/off with digital processing: with a set sampling frequency, every 5

seconds, the system will read the switch and indicate if the light is on or off, no matter

how intense and bright the light is. When you change the dimmer within these 5

seconds, the LED's light will not change.

Figure 22 – Analog vs. Digital Signal

Summary

In the real world, analog signals are the most commonly used. However, digital signals and

processing are recommended when it comes to robotics. The reasons are: 1) digital

processing is cheaper and provides more flexibility compared to analog processing; 2)

programs work in a binary form similar to digital signals; and 3) analog signals are more likely

to be affected by electrical circuit noise.

Based on these reasons, analog signals are converted into digital signals a lot of the time. It

should be noted that all analog signals, both inputs, and outputs, can be converted into digital

signals, but not the other way around.

P a g e | 69

2. Fundamentals of Programming with Arduino IDE

 Number of participants: 1-10 per facilitator

 Duration: 3h

 Teaching methods: Presentation, Guided instruction, Experiential learning

 Required materials: Presentation, Arduino IDE and Boards, computer (1 per

participant) and Stable internet connection

2.1. Setting up Arduino IDE and basic commands

In this section, we will learn how to download and run the Arduino IDE for the first time. We

will also go through some basic functions of Arduino IDE in order to get familiarised with the

program.

How to download Arduino IDE:

The following instructions are provided to download and set up the Arduino IDE:

1. Go to https://www.arduino.cc/

2. Click on Software. It will automatically open the page shown below in Figure 7.

Figure 23 – Downloading Arduino IDE

3. Click on the download option that suits your operating system (see Figure 7). If you

have doubts, click on “Getting Started” to read more information about installing the

software for your computer.

Arduino IDE is used to create, open and change sketches. The board is defined by the sketches

we write on the computer through the Arduino IDE. You can either use the buttons shown at

the top of the IDE or the menu items.

https://www.arduino.cc/

P a g e | 70

Once the download is done, the page shown below will open automatically:

Figure 24 – Opening Arduino IDE for the first time

How to change the language:

1. Click on FILE and select PREFERENCES.

2. Next to the Editor Language, a dropdown menu of currently supported languages is shown.

3. Select your preferred language from the menu.

4. Restart the software to use the selected language.

Figure 25 – Changing language settings in Arduino IDE

P a g e | 71

How to create a new project:

File -> New

It is also possible to use already developed examples to have some inspiration or to

reproduce them:

File -> Examples

Figure 26 – Creating a new project in Arduino IDE

How to verify a project:

Click on the left below the Tab FILE. It will turn orange while it is compiling information. Wait

until it comes back to its initial colour.

Figure 27 – Verifying a project in Arduino IDE

How to upload a program:

The Arduino board should be plugged into your computer with a USB cable to upload the

program. To upload the program, you should click on the horizontal arrow:

Figure 28 – Uploading a program in Arduino IDE

P a g e | 72

When the program is uploaded, the arrow will return to its initial colour.

If you have plugged and set up your Arduino board according to what you have programmed,

you will be able to watch your program in action.

2.2. Programming in Arduino and uploading programs to the board

How to program in Arduino:

After understanding the hardware of the Arduino UNO board and downloading the Arduino

software, we are ready to start programming.

Arduino programs can be divided into three main parts:

1. Structure,

2. Values (variables and constants) and

3. Functions.

In this session, we will learn about the Arduino software program, step by step, and how we

can write the program without any syntax or compilation error.

Arduino – Programme Structure

Let us start with the Structure. Software structure consists of two main functions:

Setup() function

Loop() function

Figure 29 - Arduino – Programme Structure

The setup() function is called when a sketch starts. We use it to initialise the variables, pin

modes, start using libraries, etc. The setup function will only run once after each power-up or

reset of the Arduino board. After creating a setup() function, which initialises and sets the

initial values, the loop() function does precisely what its name suggests and loops

consecutively, allowing your program to change and respond. Use it to actively control the

Arduino board.

P a g e | 73

Data Types

The Arduino environment is similar to C++ with library support and built-in assumptions about

the target environment to simplify the coding process. Below is a list of some data types

commonly used in Arduino:

● boolean (8 bit): true/false

● byte (8 bit): unsigned number from 0-255

● char (8 bit): signed number from -128 to 127.

● word (16 bit): unsigned number from 0-65535

● int (16 bit): signed number from -32768 to 32767.

● unsigned long (32 bit) - unsigned number from 0-4,294,967,295.

Arduino – Variables

Variables in the C programming language, which Arduino uses, have a property called scope.

A scope is a region of the program, and there are three places where variables can be

declared. They are:

● Inside a function or a block, which is called local variables.

● In the definition of function parameters, which are called formal parameters.

● Outside of all functions, which are called global variables.

Example of variables:

This example creates an integer called 'countUp,' initially set as the number zero. The variable

goes up by one in each loop.

Figure 30 – Arduino Variables Example.

Source: https://www.arduino.cc/reference/en/language/variables/data-types/int/

https://www.arduino.cc/reference/en/language/variables/data-types/int/

P a g e | 74

An operator is a symbol that tells the compiler to perform specific mathematical or logical

functions. C language is rich in built-in operators and provides the following types of

operators:

- Arithmetic Operators

- Comparison Operators

- Boolean Operators

- Bitwise Operators

- Compound Operators

More details about each type of operator can be retrieved from here:

https://www.tutorialspoint.com/arduino/arduino_operators.htm

2.3. Blinking Led with Arduino

In this part, we create and upload a simple sketch that will cause a LED to blink repeatedly by

turning it on and off for 1-second intervals.

Steps:

● Connect the Arduino to the computer with the USB cable.

● Open the IDE

● Choose Tools4Serial Port. Ensure the USB port is selected and that the Arduino board

is properly connected.

● Connect a LED to the Arduino's digital pin 13 (as shown in the figure below). A digital

pin can either detect an electrical signal or generate one command. In this small

project, we will generate an electrical signal that will light the LED.

Figure 31 – Arduino Digital Pin in Blinking Led Example

Source: https://www.instructables.com/How-to-Blink-LED-Using-Arduino/

● Enter the following into your sketch between the braces { and }, under the void

setup():

pinMode(13, OUTPUT); // set digital pin 13 to output

https://www.tutorialspoint.com/arduino/arduino_operators.htm
https://www.instructables.com/How-to-Blink-LED-Using-Arduino/

P a g e | 75

The number 13 in the listing represents the digital pin you're addressing. You are setting this

pin to OUTPUT, which will generate (output) an electrical signal. If you wanted it to detect an

incoming electrical signal, you would use INPUT instead. Notice that the function pinMode()

ends with a semicolon (;). Every function in your Arduino sketches will end with a semicolon.

● Save your sketch again to ensure that you don't lose any of your work by choosing

File > Save As.

● Enter a short name for your sketch, and then click OK.

Remember that our goal is to make the LED blink repeatedly. We will create a loop function

to tell the Arduino to execute an instruction repeatedly until the power is shut off or someone

presses the RESET button.

● Enter the code shown in boldface after the void setup() section in the following listing

to create an empty loop function.

● End this new section with another brace (}), and then save your sketch again.

void setup()

{

pinMode(13, OUTPUT); // set digital pin 13 to output

}

void loop()

{

// place your main loop code here:

}

● Next, enter the actual functions into the void loop() for the Arduino to execute.

● Enter the following between the loop function's braces and then, click Verify to make

sure that you have entered everything correctly:

digitalWrite(13, HIGH); // turn on digital pin 13

delay(1000); // pause for one second

digitalWrite(13, LOW); // turn off digital pin 13

delay(1000); // pause for one second

The digitalWrite() function controls the voltage that is output from a digital pin: in this case,

pin 13 to the LED. By setting the second parameter of this function to HIGH, a "high" digital

voltage is output; then current will flow from the pin, and the LED will turn on.

With the LED turned on, the light pauses for 1 second with delay(1000). The delay() function

causes the sketch to do nothing for a period of time— in this case, 1,000 milliseconds or 1

second.

● Next, we turn off the voltage to the LED with digitalWrite(13, LOW);

P a g e | 76

● Finally, we pause again for 1 second while the LED is off, with delay(1000);

The completed sketch should look like this:

void setup()

{

pinMode(13, OUTPUT); // set digital pin 13 to output

}

void loop()

{

digitalWrite(13, HIGH); // turn on digital pin 13

delay(1000); // pause for one second

digitalWrite(13, LOW); // turn off digital pin 13

delay(1000); // pause for one second

}

● Save your sketch.

● Verify your sketch, to ensure that it has been written correctly so that the Arduino

can understand.

● Once the sketch has been verified, a note should appear in the message window, as

shown below:

Figure 32 – Verification of Sketch in the Blinking Led Example

● Ensure that your Arduino board is connected and click Upload in the IDE. The IDE may

verify your sketch again and upload it to your Arduino board.

The TX/RX LEDs on your board should blink during this process, indicating your program

functions properly.

P a g e | 77

3. Applications

 Number of participants: 1-10 per facilitator

 Duration: 5.5h

 Teaching methods: Presentation, Guided instruction, Experiential learning

 Required materials: Presentation, Arduino IDE and Boards, computer (1 per

participant), Stable internet connection and relevant materials depending on the

project (e.g., paintbot)

3.1. What is robotics?

Robotics is a field where science, engineering and technology intersect. The goal is to produce

machines, called robots, capable of substituting, replicating or assisting human actions.

Originally, robots were built to handle monotonous tasks, especially in industry. But since

their creation, they have expanded beyond their initial uses. Nowadays, we can find an

enormous variety of robots that can perform a wide range of tasks like fighting fires, cleaning

homes and assisting doctors with incredibly intricate surgeries. Each robot includes a differing

level of autonomy, starting from human-controlled bots that perform tasks that a human has

full control over to fully-autonomous bots that perform tasks with no external influences.

The world of robotics is clearly expanding but still, we can find come consistent

characteristics:

1. “Robots consist of some sort of mechanical construction. The mechanical aspect of a

robot helps it complete tasks in the environment for which it’s designed” (Built In,

2022, §3).

2. “Robots need electrical components that control and power the machinery” (Built In,

2022,§3).

3. “Robots contain at least some level of computer programming. Without a set of code

telling it what to do, a robot would just be another piece of simple machinery.

Inserting a program into a robot gives it the ability to know when and how to carry out

a task” (Built In, 2022, §3).

3.2 Types of robots

In today’s world, we can find a range of robots used for various applications. As technology

advances, robots become more and more important in our everyday lives where they play an

important role. There are many types of robots and they vary a lot from one to another, from

mini robots to huge industrial robots, from concierge robots to entertainment robots.

We can classify robots in many different ways, considering their types and applications. Every

robot has its own unique features and it can vary a lot in size, shape and capabilities.

Nonetheless, many robots share a spread of features. Here are the 13 categories we can use

to classify robots.

P a g e | 78

Industrial robots

In the robot industry, we can find mainly six types of robots: articulated robots, Cartesian

robots, SCARA robots, cylindrical robots, delta robots and polar robots.

● Articulated Robot: It resembles a human arm in its mechanical configuration. The arm

is connected to the base with a twisting joint. The number of rotary joints connecting

the links in the arm can range from two joints to ten joints and each joint provides an

additional degree of freedom (Analytics Insight, 2021).

Figure 33 – Articulated robot

Source: https://diy-robotics.com/article/articulated-robots/

● Cartesian: Also called rectilinear or gantry robots, Cartesian robots have three linear

joints that use the Cartesian coordinate system (X, Y, and Z). They also may have an

attached wrist to allow for rotational movement. The three prismatic joints deliver a

linear motion along the axis (Analytics Insight, 2021).

Figure 34 – Cartesian robot

Source: https://diy-robotics.com/article/what-you-should-know-about-cartesian-robot/

https://diy-robotics.com/article/articulated-robots/
https://diy-robotics.com/article/what-you-should-know-about-cartesian-robot/

P a g e | 79

● SCARA: Selective Compliance Assembly/Articulated Robot or Arm (SCARA) is more

commonly used for assembly purposes all over the world due to its easy and

unobstructed mounting (Analytics Insight, 2021).

Figure 35 – SCARA Arm

Source: https://diy-robotics.com/article/scara-robots/

● Cylindrical: These robots are generally used for assembly purposes, spot welding and

machine die castings. They have a minimum of one rotary joint at the base and at least

one prismatic joint to connect the links. The rotary joint uses a rotational motion along

the joint axis, while the prismatic joint moves in a linear motion (Analytics Insight,

2021).

Figure 36 – Cylindrical Work Envelop

Source: https://learnmech.com/cylindrical-robot-diagram-construction-applications/

● Delta Robots: Also referred to as “spider robots,” they use three base-mounted

motors to actuate control arms that position the wrist. Basic delta robots are 3-axis

units but 4- and 6-axis models are also available (Analytics Insight, 2021).

https://diy-robotics.com/article/scara-robots/
https://learnmech.com/cylindrical-robot-diagram-construction-applications/

P a g e | 80

Figure 37 – Delta robots

Source: https://diy-robotics.com/article/top-six-types-industrial-robots-2020/

● Polar: Also known as spherical robots, in this configuration the arm is connected to

the base with a twisting joint and a combination of two rotary joints and one linear

joint. The axes form a polar coordinate system and create a spherical-shaped work

envelope (Analytics Insight, 2021).

Figure 38 – Polar robots

Source: https://www.howtorobot.com/expert-insight/industrial-robot-types-and-their-different-

uses

Apart from industrial robots, there are limitless kinds of robots in every field like education,

security, space science, medicine and more. Here you can find some examples of those

robots but remember that you can find many more.

Domestic robots

Also called consumer robots are robots you can buy and use just for fun or to help you with

tasks and chores. These robots are used to perform household tasks that include pool cleaning

robots, robot vacuum cleaners, gutter cleaning robots, AI-powered robot assistants, and a

https://diy-robotics.com/article/top-six-types-industrial-robots-2020/
https://www.howtorobot.com/expert-insight/industrial-robot-types-and-their-different-uses
https://www.howtorobot.com/expert-insight/industrial-robot-types-and-their-different-uses

P a g e | 81

growing variety of robotic toys and kits. This category may include entertainment robots, they

are designed to arouse human emotions to entertain us.

Military robots and disaster response robots

Robots are also used in the military or for an emergency response where the situation may

be too dangerous for humans. Robot drones, mine detectors, and sensing devices are

common on the battlefield but require direct control by humans. Remotely piloted vehicles

prevent the loss of human life that would occur if soldiers were on the field instead of being

behind controllers (Stanford Edu, 2022). Nonetheless, the use of robots and AI in military

operations is quite controversial and can raise many legitimate ethical concerns.

Furthermore, these types of robots are able to endure extreme conditions and traverse

difficult fields. These robots perform dangerous jobs like searching for survivors in the

aftermath of an emergency and helping in other crucial activities at the disaster site (Analytics

Insight, 2021).

Medical robots

Robots have had a huge impact on medicine. They started about 35 years ago when the goal

was to insert a probe into the brain to obtain a biopsy specimen. “Today, medical robots are

well known for their roles in surgery, specifically the use of robots, computers and software

to accurately manipulate surgical instruments through one or more small incisions for various

surgical procedures. A 3D high-definition magnified view of the surgical field enables the

surgeon to operate with high precision and control” (NCBI, 2019). One of the most famous

medical robots is the one produced by da Vinci, approved by the FDA in 2000 and it is said to

have been used to perform over 6 million surgeries, worldwide (NCBI, 2019).

Service Robots

“The International Organization for Standardization defines a “service robot” as a robot “that

performs useful tasks for humans or equipment excluding industrial automation applications”

(IFR, 2022). The most common types of service robots are concierge robots and hospitality

robots. Guardforce Hong Kong, for instance, has launched a concierge robot that automates

visitor registration, controls access points through facial recognition and offers multimedia

information, making it perfect for commercial buildings, events and exhibitions. The same

company has a hospitality robot for malls that provides a shopping guide, a handshake and

chat function and the ability for customers to download coupons (Guardforce, 2022).

Cobots

Collaborative robots or “cobots” work together with humans in a shared environment to

perform their tasks. E.g., the Sawyer robot arm helps greenhouse workers pick plants.

Mitsubishi robot offers coffee at Café X kiosk in Hong Kong.

P a g e | 82

Drones

Also called unmanned aerial vehicles (UAV), which is actually an aircraft without a human

pilot on board. Drones can be of different sizes and have different levels of autonomy. This

type of robot has invaded a wide range of industries around the world and it helps in carrying

out many activities such as atmosphere clearing, aerial photography and delivery.

Humanoid robots

This is probably the type of robot that most people think of when they think of a robot. These

robots look like and can also mimic human behaviour. They usually perform human-like

activities (like running, jumping and carrying objects) and are sometimes designed to look like

us, even having human faces and expressions (Built In, 2022).

Educational robots

Educational robotics is a new discipline designed to introduce students to Robotics and

Programming in an interactive way from a very early age. Educational robotics provides

students with everything they need to easily build and program a robot capable of

performing various tasks, the complexity of the discipline is always adapted to the students'

age (Iberdrola, 2022).

3.3 Driving a DC motor with a motor shield

Typically, robots and automated devices contain moving parts. Movement is enabled by

motors that are programmed to function in a certain way. In this section, we explore the

programming of a basic DC motor, a motor that can spin clockwise and counterclockwise.

DC motors are generally employed in toys as well as in electrical appliances such as mixers

and other kitchen gadgets.

It is possible to run a DC motor with a programmable board (ex. Arduino) using just a few

components. However, for simplicity’s sake, it is generally agreed that the best solution is to

couple the DC motor with a motor shield.

There are two main strategies to wire a DC motor to an Arduino board. The first involves

using a Mosfet and a diode, the second one relies on an electronic component called a

motor shield.

A motor shield allows us to bypass a number of complicated wirings that are necessary to

operate one or more DC motors.

There exist several motorshields. For the following exercise, you will need the Adafruit

motor shield V1. Be careful to choose Version 1 and not Version 2 of the Adafruit motor

shield, as the programming of one is not compatible with the other.

P a g e | 83

The Adafruit motor shield V1 contains two L293D chips. For this reason, it can drive up to 4

DC motors simultaneously.

Figure 39 – Adafruit motor shield V1

Source: https://learn.adafruit.com/adafruit-motor-shield/af-dcmotor-class

Besides DC motors, it is possible to drive servo motors and stepper motors with the adafruit

motor shield.

Figure 39 – Adafruit motor shield V1 conntected

Source: https://learn.adafruit.com/adafruit-motor-shield/af-dcmotor-class

You can connect one DC motor to the shield by joining the motor cables to either M1, M2,

M3 or M4.

When you’re done, you can get started with the coding task.

In order to program the DC motor connected to our motor shield, we first need to install the

adafruit motor shield library. You will find it in the library directory by searching for “AF

motor”.

https://learn.adafruit.com/adafruit-motor-shield/af-dcmotor-class
https://learn.adafruit.com/adafruit-motor-shield/af-dcmotor-class

P a g e | 84

Go to Sketch > Include Library > Manage Libraries...

At this stage, you can start programming the motor shield. A simple code to make the DC

motor spin is the following:

#include <AFMotor.h>

AF_DCMotor motor1(1); // We define a motor attached to M1 on the motor shield

void setup()

{

motor1.setSpeed(100); // We define the speed with which the motor will spin

}

void loop()

{

motor1.run(BACKWARD); // the motor will spin either clockwise or counterclockwise,

depending on the way you connected it to the motor shield. To make it spin the opposite

direction you need to replace BACKWARD with FORWARD.

delay(10000); // it will spin for 10 seconds

 motor1.run(RELEASE); // it will stop for 1 second and begin from the top of the loop

function again

delay(1000);

 }

3.4. Build a paintbot using a DC motor and Arduino

It is possible to implement the programming of a DC motor in an artistic setting to achieve

something interactive and creative. A paintbot merges arts with electronics and it’s a

machine that uses paint to create unique artworks.

P a g e | 85

Figure 40 – Artwork using a paintbot

Source: https://girlsinstem.eu/

The PaintBot consists of a turning table, rotating at varying speeds. On the turning table,

you can place a sheet of paper or a small canvas. By carefully dropping paint drops above

the rotating sheet, you get a unique masterpiece created by you and the PaintBot.

Figure 41 – Components of a paintbot

Source: https://girlsinstem.eu/

Create the box

A. Take a red and black piece of wire of at least 30 cm each and connect it to the motor.

(Be sure not to cut the pieces too small as this complicates connecting the motor in

the PaintBot to the rest of the electronic circuit. The bigger your box, the longer the

wires need to be)

B. Use the egg carton as a motor stand

1. Remove the lid of the egg carton, we do not need it.

https://girlsinstem.eu/
https://girlsinstem.eu/

P a g e | 86

2. We need one of the tops of the egg carton and its surrounding 4 egg spots. Cut

between the 3rd/4th egg spot and the adjacent top.

3. Cut the tip of the top. It is better to start cutting a small piece and adjust it

afterwards rather than cutting too much.

4. Put the motor from the bottom to the top with the motor shaft upwards and the

wires pointing down. The motor should fit tightly in the hole you just cut. You can

try to push it carefully or cut a bit more from the top. It is important that the

motor fits firmly and the construction is robust as it forms the base of the turning

table. To give extra stability and support you can use tape or you can put

toothpicks underneath the motor through the egg carton.

C. Make a little hole in the middle of the cardboard box. Put the wires of the motor

through the hole going from the inside of the box to the outside or bottom of the

box. Place the egg carton holder on top of it.

D. Ensure that the egg carton holder is placed in the middle of the box and firmly attach

it to the box. This is very important as it needs to withstand the force of the rotating

motor.

E. Place a carton disc (round or any other shape) on top of the red (3D printed) motor

connection disc. Make sure it is smaller than the box so it can freely rotate.

Figure 42 – Step B of the paintbot

 Figure 43 – Step C of the paintbot Figure 44 – Step D of the paintbot

P a g e | 87

Connect the electronics

After creating the box, you can simply connect the DC motor that’s attached to the motor

shield and program it to change speed and direction in order to create your artwork!

3.5 Build an interactive paper toy with a servo motor

A servomotor is any motor-driven system with a feedback element built-in.

If you open up a standard servo motor, you will almost always find three core components:

a DC motor, a controller circuit and a potentiometer or similar feedback mechanism. The DC

motor is attached to a gearbox and output/drive shaft to increase the speed and torque of

the motor. The DC motor drives the output shaft. The controller circuit interprets signals

sent by the controller and the potentiometer acts as the feedback for the controller circuit

to monitor the position of the output shaft.

Figure 45 - Servomotor

Source: https://www.sparkfun.com/servos

Servo Motors have countless applications. In this section, we illustrate how to use a servo

motor to create an interactive paper toy whose head you can turn left or right by acting on a

potentiometer.

There will be no programming for this project, however, it is possible to achieve the exact

same results by coupling the servo motor with an Arduino board.

Step 1: Create the paper toy

We will start by creating our paper toy. First off, you need to choose a template, then cut

out the template from paper or cardboard and finally assemble the paper toy according to

the instructions.

Different templates to choose from are available on Cubeecraft.

https://www.sparkfun.com/categories/245
https://www.sparkfun.com/servos
https://www.cubeecraft.com/

P a g e | 88

Step 2: Build the electronic circuit

We start by placing the NE555 chip in the middle of a breadboard, just like in the photo

below.

Figure 46 – Timer-pinout

Source: http://www.learningaboutelectronics.com/Articles/555-timer-pinout.php

http://www.learningaboutelectronics.com/Articles/555-timer-pinout.php

P a g e | 89

Then we add two jumper wires, one that connects leg 4 and leg 8 of the NE555 and another

that connects legs 2 and 6.

Next, we add a capacitor that connects legs 1 and 2.

P a g e | 90

We add a 220k ohm resistor that connects legs 2 and 7.

Then we add a Zener diode that connects legs 6 and 7 of the NE555 as shown in the photos.

Make sure to put the diode in the right direction, i.e., with the black stripe on leg 6.

We add a jumper wire that goes from leg 1 to the negative pole and then another that

connects leg 7 to another line further in the breadboard. A new wire will be connected on

one side to leg 3 of the NE555 (for the moment we do not take care of the other end of the

wire).

P a g e | 91

We add a jumper wire that connects leg 1 to the positive pole. Then, we position the

potentiometer as in the photo below. With a leg on the same line of the cable (orange) that

started from leg 7 of the NE555. We add on the line where the middle leg of the

potentiometer is located, another wire which will join the positive pole.

P a g e | 92

We now take the (white) jumper wire that was connected to leg 3 of the NE555 from one

end and we connect it to the orange cable of the servo motor. Also, we connect a wire to

the positive pole of the breadboard from one end to the red wire of the servo on the other

end. We do the same with a wire that comes out of the negative pole of the breadboard and

connects to the brown cable of the servo motor (See pictures below).

P a g e | 93

The last step is to take a 5V adapter, cut the tip and remove the plastic to have the red cable

and the black cable available. We strip a little the two ends that we will also introduce into

the positive and negative poles respectively.

That's it, our circuit is finished!

To complete the project, connect the servo motor to the head of the paper toy and hide the

electronic circuit inside a cardboard box. Make sure to drill a hole for the potentiometer.

P a g e | 94

3.6. Remote-controlled door lock

IR, or infrared communication is a common, inexpensive and easy to use wireless

communication technology. IR light is very similar to visible light, except that it has a slightly

longer wavelength. This means IR is undetectable to the human eye - perfect for wireless

communication.

In order to understand how IR technology works, in the following section you will be

building a door lock connected to an Arduino board.

Build a remote-controlled door lock that functions with infrared technology

In this project we will be using the information gathered previously about infrared

technology to create a remote-controlled door lock.

You will be using an infrared remote controller, an infrared receiver and a servomotor to

complete this project.

Step 1: Install the library

Head to this website and download the library. Next, we need to install the library on the

Arduino IDE software. Go to Arduino IDE → Sketches→ Include a library → IRremote.

Step 2: Figure out the key of your remote

http://en.wikipedia.org/wiki/Infrared
https://learn.sparkfun.com/tutorials/light/infrared-light
https://learn.sparkfun.com/tutorials/light/infrared-light
https://github.com/Arduino-IRremote/Arduino-IRremote

P a g e | 95

In order to figure out how your arduino board interprets the electric signals sent out by your

remote, we need to upload the following code onto the board.

/* Finding the key codes for your remote. More info: https://www.makerguides.com */

#include <IRremote.h> // include the IRremote library

#define RECEIVER_PIN 13 // define the IR receiver pin

IRrecv receiver(RECEIVER_PIN); // create a receiver object of the IRrecv class

decode_results results; // create a results object of the decode_results class

void setup() {

 Serial.begin(9600); // begin serial communication with a baud rate of 9600

 receiver.enableIRIn(); // enable the receiver

 receiver.blink13(true); // enable blinking of the built-in LED when an IR signal is received

}

void loop() {

 if (receiver.decode(&results)) { // decode the received signal and store it in results

 Serial.println(results.value, HEX); // print the values in the Serial Monitor

 receiver.resume(); // reset the receiver for the next code

 }

}

Next, you can open the Arduino serial monitor and by clicking on the remote buttons you

will be able to view the key that gets displayed on the serial monitor. Each button of your

remote corresponds to a different key. Take note of the different keys because you will

need this information later.

Step 3: Wire all components

Wire all components as illustrated in the images below. Be careful with the IR receive: the

positive output goes to 5V of the Arduino board, the negative output to ground and the

signal output to digital pin 2 (see code below).

Notice that the signal output of the servomotor is connected to digital pin 9 of the Arduino

board.

P a g e | 96

P a g e | 97

Step 4: Code

We need to upload the following code onto the board:

#include <IRremote.h> //must copy IRremote library to arduino libraries

#include <Servo.h>

#define up 0xFF906F //clockwise rotation button

#define down 0xFFE01F //counterclockwise rotation button

int RECV_PIN = 2; //IR receiver pin

Servo servo;

int val; //rotation angle

bool cwRotation, ccwRotation; //the states of rotation

IRrecv irrecv(RECV_PIN);

decode_results results;

void setup()

{

 Serial.begin(9600);

 irrecv.enableIRIn(); // Start the receiver

 servo.attach(9); //servo pin

P a g e | 98

}

void loop()

{

 if (irrecv.decode(&results)) {

 Serial.println(results.value, HEX);

 irrecv.resume(); // Receive the next value

 if (results.value == up)

 {

 cwRotation = !cwRotation; //toggle the rotation value

 ccwRotation = false; //no rotation in this direction

 }

 if (results.value == down)

 {

 ccwRotation = !ccwRotation; //toggle the rotation value

 cwRotation = false; //no rotation in this direction

 }

 }

 if (cwRotation && (val != 175)) {

 val++; //for clockwise button

 }

 if (ccwRotation && (val != 0)) {

 val--; //for counter clockwise button

 }

 servo.write(val);

 delay(20); //General speed

}

Step 5: Create the door lock

By now you should have tested your project. If the servo motor responds to the commands

sent by the remote controller, then it’s time to think about the door lock. You can be

creative here and imagine any type of door lock. We suggest a solution that involves

attaching the servo motor directly to a door, like in the image below.

P a g e | 99

3.7. Measuring temperature, humidity, light and colour

In the previous projects, we have used motors to achieve different results, from simply

driving a motor clockwise or counterclockwise to building more sophisticated gadgets such

as the interactive paper toy or the remote-controlled door lock.

Now, motors are actuators which means that they are meant to perform a certain action.

Together with actuators, one could also choose to employ some sensors. We’ve actually

explored a couple of sensors in the previous chapter. The first one was the potentiometer,

the second one was the infrared sensor which receives IRR signals and translates them into

computer code for the Arduino board.

This section is all about sensors. The objective is to familiarize yourself with this type of

electronic components to be able to take your own projects to the next level.

P a g e | 100

In particular, we will be exploring sensors that measure temperature, light, as well as

humidity and colour.

3.7.1. Using a sensor with Arduino

The light sensor is a type of resistor, it is called a light-dependent resistor. It is used to

detect light and also to measure the brightness level of a certain environment.

A light sensor has two pins and because it is basically a resistor we do not need to

distinguish between these two pins.

The higher the intensity of the light, the smaller is the resistance recorded by the light

sensor. Therefore, by measuring the light sensor resistance we can know how bright the

environment is.

This is how to wire a photoresistor to an Arduino board.

Figure 47 – Connecting a photoresistor to an Arduino board

Source: https://arduinogetstarted.com/tutorials/arduino-light-sensor

And this is a simple code that allows you to view the values recorded by the light sensor via

the serial monitor of the Arduino IDE.

void setup() {

 // initialize serial communication at 9600 bits per second:

 Serial.begin(9600);

}

void loop() {

 // reads the input on analog pin A0 (value between 0 and 1023)

https://arduinogetstarted.com/tutorials/arduino-light-sensor

P a g e | 101

 int analogValue = analogRead(A0);

 Serial.print("Analog reading: ");

 Serial.print(analogValue); // the raw analog reading

 delay(500);

}

3.7.2. Build a theremin with Arduino and a light sensor

The theremin is a synthesizer that makes a sound as you wave your hands in front of it. It is

basically an electronic musical instrument.

In this project, we are going to make a similar instrument that will change the pitch of the

note as you wave your hand in front of it.

We will need a piezo buzzer, a light sensor and a 1k ohm resistor.

Step 1: Wiring

Complete the wiring as per the diagram below

Figure 48 – Wiring a theremin with Arduino

Source: https://learn.adafruit.com/adafruit-arduino-lesson-10-making-sounds/pseudo-

theramin

https://learn.adafruit.com/adafruit-arduino-lesson-10-making-sounds/pseudo-theramin
https://learn.adafruit.com/adafruit-arduino-lesson-10-making-sounds/pseudo-theramin

P a g e | 102

Step 2: Code

int speakerPin = 12;

int photocellPin = 0;

void setup()

{

}

void loop()

{

 int reading = analogRead(photocellPin);

 int pitch = 200 + reading / 4;

 tone(speakerPin, pitch);

}

The sketch is actually really straightforward. We simply take an analog reading from A0, to

measure the light intensity. This value will be in the range of something like 0 to 700.

We add 200 to this raw value to make 200 Hz the lowest frequency and simply add the

reading divided by 4 to this value to give us a range of around 200 Hz to 370 Hz.

In order to produce different effects, you can try to change the value by which the reading

of the light sensor is divided. For example, replace 4 with 2 and see what happens.

3.7.3. Colour sensitive robots

As the name suggests, colour sorting consists in sorting objects according to their colour.

Obviously, this can be achieved by looking at each object and deciding to put it at one place

or another, however, when objects become too many this can be a tedious and incredibly

repetitive task. Then automatic colour sorting machines can come in very handy.

These machines have colour sensors to sense the colour of any object. After detecting the

colour, a motor or system of motors grabs the object and places it into the respective

receptacle. Colour sorting machines can be used in different areas where colour

identification, colour distinction and colour sorting are important. Some of the application

areas include the Agriculture Industry (Grain Sorting on the basis of colour), the Food

Industry, the Diamond and Mining Industry, Recycling etc.

P a g e | 103

Industrial colour sorter machines

Let's take a look at some industrial colour sorter machines.

Figure 49 - Industrial colour sorter machines.

Source: http://hugeacademy.com

Sorters can be divided into chute-type and belt-type colour sorters.

Belt-type colour sorters break a smaller percentage of the material (important for nuts) and

the product stays relatively static during the transport process as it moves horizontally on

the belt. In the chute type, material slides on the chute because of gravity causing collision,

friction and larger vertical movements, thus worsening the ratio of broken material. The belt

structure makes the transmission smooth and stable without bouncing of material.

Chute-type colour sorters are more common especially for food as prices are lower,

capacities are higher and products can be seen more easily from both sides, which is

important when a dehulled grain has a hull only on one side. Chute sorters are usually

applicable to specific products, as the chute is designed with special channels for this kind of

material based on sizes and shapes of the material. For example, 5 mm chutes are used for

rice, grain and plastic granules. Flat chutes are right for plastic flakes, such as PET or milk

bottle flakes.

3.7.4. Introduction to DHT11 sensor

There is a sensor for just about everything, including to measure temperature!

The DHT11 sensor is a temperature and humidity sensor, which means that it can measure

both parameters. In this project, we learn how to wire a DHT11 sensor to an Arduino board

and how to program the board in order to view the temperature values that are being

recorded by the sensor in real-time.

http://hugeacademy.com/

P a g e | 104

Step 1: Wiring

Wire all components as per the image below:

Figure 50 - DHT11 sensor on Arduino UNO

Source: https://randomnerdtutorials.com/complete-guide-for-dht11dht22-humidity-and-

temperature-sensor-with-arduino/

It is possible to ignore the resistor in the diagram, which is a 4.7 kohm resistor.

Step 2: Installing libraries

To read from the DHT sensor, we’ll use the DHT library from Adafruit. To use this library you

also need to install the Adafruit Unified Sensor library. Follow the next steps to install those

libraries.

Open your Arduino IDE and go to Sketch > Include Library > Manage Libraries. The Library

Manager should open.

Search for “DHT” on the Search box and install the DHT library from Adafruit.

https://randomnerdtutorials.com/complete-guide-for-dht11dht22-humidity-and-temperature-sensor-with-arduino/
https://randomnerdtutorials.com/complete-guide-for-dht11dht22-humidity-and-temperature-sensor-with-arduino/

P a g e | 105

Figure 51 – Installing DHT library from Adafruit

Source: https://randomnerdtutorials.com/complete-guide-for-dht11dht22-humidity-and-

temperature-sensor-with-arduino/

Step 3: Code

#include "DHT.h"

#define DHTPIN 2 // what pin we're connected to

#define DHTTYPE DHT11 // DHT 11

// Initialize DHT sensor for normal 16mhz Arduino

DHT dht(DHTPIN, DHTTYPE);

void setup() {

 Serial.begin(9600);

 Serial.println("DHTxx test!");

 dht.begin();

}

void loop() {

 // Wait a few seconds between measurements.

 delay(2000);

 // Reading temperature or humidity takes about 250 milliseconds!

 // Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor)

 // Read temperature as Celsius

 float t = dht.readTemperature();

 Serial.print("Temperature: ");

 Serial.print(t);

 Serial.print(" *C ");

}

https://randomnerdtutorials.com/complete-guide-for-dht11dht22-humidity-and-temperature-sensor-with-arduino/
https://randomnerdtutorials.com/complete-guide-for-dht11dht22-humidity-and-temperature-sensor-with-arduino/

P a g e | 106

3.7.5. Build a smart cooling fan

In this project, you will be coupling the knowledge on sensors and actuators to create a

useful and unique gadget: an intelligent cooling fan. You will be using a DC motor driven by

a motor shield (we’ve explored this in a previous chapter) plus a DHT11 sensor to record the

temperature of your room.

The final result is a cooling fan that operates when a certain temperature threshold is

attained, of course you will be able to program the system as you please and determine this

threshold temperature yourself.

Step 1: 3D printing the cooling fan

We’ve found this design on thingiverse. It is a mini cooling fan that uses a DC motor. It is

also possible to 3D print a battery case to house a 9v battery. However, this won’t be

necessary for our purposes as we will be using the 9v battery to power the motor shield.

Have a go at printing the fan and the support. If you don’t have access to a 3D printer it is of

course possible to create these two items out of cardboard or plywood or any other

material that’s consistent enough.

Step 2: Wiring it all up

Wire up all the components as per the image below:

Figure 52 – Wiring the smart cooling fan

Source: Digijeunes

https://www.thingiverse.com/thing:1438

P a g e | 107

Step 3: Code

With this program, we are instructing the Arduino board to run the DC motor if the

temperature recorded by the DHT11 sensor is equal to or greater than 24°. Otherwise, the

DC motor will not spin.

#include "DHT.h"

#include "AFMotor.h"

#define DHTPIN 2 // what pin we're connected to

AF_DCMotor motor1(1); // We define a motor attached to M1 on the motorshield

#define DHTTYPE DHT11 // DHT 11

// Initialize DHT sensor for normal 16mhz Arduino

DHT dht(DHTPIN, DHTTYPE);

void setup() {

 Serial.begin(9600);

 motor1.setSpeed(100); // We define the speed with which the motor will spin

 dht.begin();

}

void loop() {

 // Wait a few seconds between measurements.

 delay(2000);

 // Reading temperature or humidity takes about 250 milliseconds!

 // Sensor readings may also be up to 2 seconds 'old' (it's a very slow sensor)

P a g e | 108

 // Read temperature as Celsius

 float t = dht.readTemperature();

 Serial.print("Temperature: ");

 Serial.print(t);

 Serial.print(" *C ");

 if (t >= 24)

 {

 motor1.run(BACKWARD);

 }

 else

 {

 motor1.run(RELEASE);

 }

}

References

Autodesk, Inc. (2020). What You'll Learn. https://www.instructables.com/Tools-

andMaterials-for-Arduino/

Boxall, J. (2013). Arduino workshop: A Hands-On introduction with 65 projects. No Starch

Press.

Circuit Basics (n.d.). Introduction to Microcontrollers.

https://www.circuitbasics.com/introduction-to-microcontrolleres/

Green Steam Incubator. (2019). Module on Microcontrollers: 30 hours lessons.

https://steam-incubator.org/wp-content/uploads/2021/11/IO3.2-GSI-Module-on-

Microcontrollers.pdf

Makerspaces.com (2022). Arduino For Beginners. https://www.makerspaces.com/arduino-

uno-tutorial-beginners/

Techatronic (2022). Types of Arduino Boards. https://techatronic.com/types-of-arduino-

boards-arduino-uno-mega-mini-specification/

https://www.instructables.com/Tools-andMaterials-for-Arduino/
https://www.instructables.com/Tools-andMaterials-for-Arduino/
https://www.circuitbasics.com/introduction-to-microcontrolleres/
https://steam-incubator.org/wp-content/uploads/2021/11/IO3.2-GSI-Module-on-Microcontrollers.pdf
https://steam-incubator.org/wp-content/uploads/2021/11/IO3.2-GSI-Module-on-Microcontrollers.pdf
https://www.makerspaces.com/arduino-uno-tutorial-beginners/
https://www.makerspaces.com/arduino-uno-tutorial-beginners/
https://techatronic.com/types-of-arduino-boards-arduino-uno-mega-mini-specification/
https://techatronic.com/types-of-arduino-boards-arduino-uno-mega-mini-specification/

P a g e | 109

Learn Adafruit (2022). Adafruit motor shield. https://learn.adafruit.com/adafruit-motor-

shield/af-dcmotor-class

Sparkfun (2022). Servos. https://www.sparkfun.com/servos

Learning about electronics (2022). 555 timer pinout.

http://www.learningaboutelectronics.com/Articles/555-timer-pinout.php

Girls in STEM (2022). EU funded project. https://girlsinstem.eu/

Arduino Get Started (2022). Arduino light sensor.

https://arduinogetstarted.com/tutorials/arduino-light-sensor

Adafruit (2012). Pseudo theremin. https://learn.adafruit.com/adafruit-arduino-lesson-10-

making-sounds/pseudo-theramin

Huge academy (2022). http://hugeacademy.com/

Random nerd tutorials (2022). Complete guide for DHT11 humidity and temperature sensor

with Arduino. https://randomnerdtutorials.com/complete-guide-for-dht11dht22-

humidity-and-temperature-sensor-with-arduino/

DIY robotics (2020). Articulated robots. https://diy-robotics.com/article/articulated-robots/

DIY robotics (2020). What you should know about cartesian robot. https://diy-

robotics.com/article/what-you-should-know-about-cartesian-robot/

DIY robotics (2020). Scara robots. https://diy-robotics.com/article/scara-robots/

DIY robotics (2020). Articulated robots. https://diy-robotics.com/article/top-six-types-

industrial-robots-2020/

Learn mech (2022). Cylindrical robot diagram construction applications.

https://learnmech.com/cylindrical-robot-diagram-construction-applications/

How to robot (2022). Industrial robot types and their different uses.

https://www.howtorobot.com/expert-insight/industrial-robot-types-and-their-

different-uses

Robot Worx (2022). What are the main types of robots. https://www.robots.com/faq/what-

are-the-main-types-of-robots

Built In (2022). Robotics. https://builtin.com/robotics

Analytics Insight (2021). Common types of robots.

https://www.analyticsinsight.net/common-types-of-robots-are-there-any-new-ones-

you-havent-heard-yet/

Stanford Edu (2022). Army robots

https://cs.stanford.edu/people/eroberts/cs201/projects/2010-

11/ComputersMakingDecisions/army-robots/index.html

NCBI (2019). Articles. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625162/

Guarforce (2022). https://www.guardforce.com.hk/

Iberdrola (2022). Educational robots. https://www.iberdrola.com/innovation/educational-

robots

https://learn.adafruit.com/adafruit-motor-shield/af-dcmotor-class
https://learn.adafruit.com/adafruit-motor-shield/af-dcmotor-class
https://www.sparkfun.com/servos
http://www.learningaboutelectronics.com/Articles/555-timer-pinout.php
https://girlsinstem.eu/
https://arduinogetstarted.com/tutorials/arduino-light-sensor
https://learn.adafruit.com/adafruit-arduino-lesson-10-making-sounds/pseudo-theramin
https://learn.adafruit.com/adafruit-arduino-lesson-10-making-sounds/pseudo-theramin
http://hugeacademy.com/
https://randomnerdtutorials.com/complete-guide-for-dht11dht22-humidity-and-temperature-sensor-with-arduino/
https://randomnerdtutorials.com/complete-guide-for-dht11dht22-humidity-and-temperature-sensor-with-arduino/
https://diy-robotics.com/article/articulated-robots/
https://diy-robotics.com/article/what-you-should-know-about-cartesian-robot/
https://diy-robotics.com/article/what-you-should-know-about-cartesian-robot/
https://diy-robotics.com/article/scara-robots/
https://diy-robotics.com/article/top-six-types-industrial-robots-2020/
https://diy-robotics.com/article/top-six-types-industrial-robots-2020/
https://learnmech.com/cylindrical-robot-diagram-construction-applications/
https://www.howtorobot.com/expert-insight/industrial-robot-types-and-their-different-uses
https://www.howtorobot.com/expert-insight/industrial-robot-types-and-their-different-uses
https://www.robots.com/faq/what-are-the-main-types-of-robots
https://www.robots.com/faq/what-are-the-main-types-of-robots
https://builtin.com/robotics
https://www.analyticsinsight.net/common-types-of-robots-are-there-any-new-ones-you-havent-heard-yet/
https://www.analyticsinsight.net/common-types-of-robots-are-there-any-new-ones-you-havent-heard-yet/
https://cs.stanford.edu/people/eroberts/cs201/projects/2010-11/ComputersMakingDecisions/army-robots/index.html
https://cs.stanford.edu/people/eroberts/cs201/projects/2010-11/ComputersMakingDecisions/army-robots/index.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6625162/
https://www.guardforce.com.hk/
https://www.iberdrola.com/innovation/educational-robots
https://www.iberdrola.com/innovation/educational-robots

P a g e | 110

